
Complete Memory-Safety with
SoftBoundCETS

Slides courtesy of
Prof. Santosh Nagarakatte

Project goal:
Make C/C++ safe and secure

Why?
Lack of memory safety is the root cause of

serious bugs and
security vulnerabilities

Oracle MySQL – buffer overflow
CVE-2014-0001 - Severity: 7.5 (High)

Firefox – use-after-free vulnerability
CVE-2014-1486 - Severity: 10.0 (High)

Google Chrome– use-after-free vulnerability
CVE-2013-6649 - Severity: 7.5 (High)

February 6, 2014

January 31, 2014

January 28, 2014

DHS/NIST National Vulnerability Database:
• Last three months: 92 buffer overflow and 23 use-after-free disclosures
• Last three years: 1135 buffer overflows and 425 use-after-free disclosures

January 30, 2014
Adobe Acrobat – buffer overflow
CVE-2013-1376- Severity: 10.0 (High)

Security Vulnerabilities due to Lack of Memory
Safety

Presenter
Presentation Notes
Comprehensive

Photo Credit: Roger Halbheer

Lack of memory safety

Presenter
Presentation Notes
Add a slide here why memory safety?

Nobody Writes New C Code, Right?

• More than a million new C-based applications!
• Over last few years, publically available. Evidence?

Presenter
Presentation Notes
Mention android

Background on Enforcing Memory Safety

struct BankAccount {
char acctID[3]; int balance;

} b;
b.balance = 0;
char* ptr = &(b.acctID);
…
…
char* p = ptr;
…
…
do {

char ch = readchar();
*p = ch;
p++;

} while(ch);

m
em

ory

Bounds Violation Example

acctID

reg

bal

10
11
12

p

38

100000

0x100x110x120x13
a

b

c

id 0x10ptr 0x10

13

17

0x17

memory

registers

Presenter
Presentation Notes
Let illustrate a spatial violation example with a simple banking application which our famous bank uses.
It represents the account with a character array account ID and balance field. The account is laid out in memory as shown .
The program variable live in registers and memory. The banking application initializes the balance field to zero.
Creates a pointer to the id field. ID pointer lies in memory and is not register allocated. Later it copies to the id pointer to p
P is register allocated. Then p is used to input the accountId. As long as the user inputs 3 characters, everything is fine.
If user inputs more than 3 characters either by accident or because the user is malicious, the user can overwrite the balance field. Moreover, he can overwrite arbitrary regions of memory. If our bank uses this application, our bank is bound to incur huge losses. Our bank would like prevent it

struct BankAcct *p, *q, *r;
…
q = malloc(sizeof(BankAcct));
…
r = q;
…
free(q);
…
p = malloc(10*sizeof(BankAcct));
….
*r = …..

Dangling Pointer Example

r

p

m
em

ory

q

registersmemory

r

Presenter
Presentation Notes
done

What is Void * C?

int foo (void * c);

Abstractions Not Enforced!

Presenter
Presentation Notes
Lack of enforced abstractions, provides abstractions and does not ensure that the abstractions are preserved.

Pointer Based Checking

• Ccured, MSCC, P&F, SafeC

• Maintain metadata with
pointers

• Each pointer has a “view of
memory it can access”

regp
registers

meta

memory

0

m
em

ory

id

bal

10
11
12

38

13

17

ptr

meta
Pointer based metadata for both

registers and memory

Fat
pointer

struct BankAccount {
char acctID[3]; int balance;

} b;
b.balance = 0;
char* ptr = &(b.acctID);
…
…
char* p = ptr;
…
do {

char ch = readchar();
*p = ch;
p++;

} while(ch);

m
em

ory

id

reg

bal

10
11
12

p

38

0

0x100x110x120x13
a

b
c

13

17

0x17

memory

registers

id

ptr

base

bound

base

bound

bound

base

Pointer Based Checking: Spatial Safety

• Registers
• For memory: hash table

– Tagged, open hashing
– Fast hash function (bitmask)
– Nine x86 instructions

• Shift, mask, multiply, add,
three loads, cmp, branch

• Alternative: shadow space
– No collisions  eliminates tag
– Reduce memory footprint
– Five x86 instructions

• Shift, mask, add, two loads

SoftBound – Santosh Nagarakatte –
PLDI 2009

SoftBound Base/Bound Storage
Shadow
Space boundbase

H
ash

Tabletag base bound

Presenter
Presentation Notes
Now that we have seen, that SoftBound metadata is on the side, lets see how we can organize it.
We can organize the metadata as a simple hash table.
….

Another alternative to the hash table would be to size the hash table sufficiently large, so that we can ensure there are no collisions, we can such an organization shadow space. This eliminates the tag field and tag checking.

Pointer Dereference Checks
• All pointer dereferences are checked

if (p < p_base) abort();

if (p + size > p_bound) abort();

value = *p;

• Five x86 instructions (cmp, br, add, cmp, br)

• Bounds check elimination not focus
– Intra-procedural dominator based
– Previous techniques would help a lot

SoftBound – Santosh Nagarakatte –
PLDI 2009

Presenter
Presentation Notes
Whenever a pointer is dereferenced, it is checked. Here pointer p is dereferenced. As with every pointer, p has its base and bound.
Dereference check essentially checks if pointer p is less than the base or is greater than the bound , then it aborts the program.
We use the size of dereference which is atmost the size of the machine word, to prevent a pointer to a character from reading an integer
This is essentially five x86 instructions

Pointer Creation

Heap Objects

p = malloc(size);
p_base = p;
p_bound = p + size;

Stack and Global Objects

int array[100];
p = &array;
p_base = p;
p_bound = p + sizeof(array);

SoftBound – Santosh Nagarakatte –
PLDI 2009

Presenter
Presentation Notes
Pointer can be created in two ways. Heap objects are created using malloc If the returned pointer is non null, then we set the base to be the pointer and bound to be pointer plus the size.

With global and stack objects, the size of the object is known statically. Base and bound is set appropriately

Base/Bound Metadata Propagation
• Pointer assignments and casts

– Just propagate pointer base and bound

• Loading/storing a pointer from memory
– Loads/stores base and bound from metadata space

• Pointer arguments to a function
– Bounds passed as extra arguments (in registers)
int f(char* p) {…}

int _f(char* p, void* p_base, void* p_bound) {…}

SoftBound – Santosh Nagarakatte –
PLDI 2009

Presenter
Presentation Notes
On pointer assignments, casts. The base and bound is propogated without any modification
On a load or a store of a pointer, the base and bound is loaded or stored from the disjoint metadata space

Pointers to Structure Fields
struct {

char acctID[3]; int balance;
} *ptr;
char* id = &(ptr->acctID);

SoftBound – Santosh Nagarakatte –
PLDI 2009

option #1
Entire Structure

id_base = &(ptr->acctID);
id_bound = &(ptr->acctID) + 3;

id_base = ptr_base;
id_bound = ptr_bound;

option #2
Shrink to Field Only

Programmer intent ambiguous;
optional shrinking of bounds

Presenter
Presentation Notes
What should we do when we create a pointer to a structure field. Similar to the bank account example. We are creating a pointer to the accountID. Should the bounds be that of the entire structure or should it be bounds of the field.

Programmer intent is generally ambiguous and provides optional shrinking of bounds

struct foo *q, *r;
struct bar *p;
…
q = malloc(sizeof(struct foo));
…
r = q;
…
free(q);
…
p = malloc(sizeof(struct bar));
….
*r = …..

r

p

m
em

ory

q

regmemory

r

Valid IDs:
ID#1

ID#2

Valid IDs:
#1

Valid IDs:
#2

unique identifier with
pointers

Maintain the set of valid
identifiers

ID#1

Pointer Based Checking: Temporal Safety

m
em

ory

q

memory

ID#1

0xF8

#42

0xF8 #42

• Split identifier
• Lock & Key

• Invariant: valid if
memory[lock] == ptr.key

• Allocation
memory[lock] = key

• Check: exception if
memory[lock] != key

• Deallocation
memory[lock] = 0

Pointer Based Checking: Lock & Key

#0

lock

key

M
eta

data

metadata

Disjoint Metadata

m
em

ory

id

reg

bal

10
11
12

p

38

0

a

b

c

13

17

memory

registers

ptr

meta

metadata

• Memory layout changed 
library compatibility lost

• Arbitrary type casts 
comprehensiveness lost

Real World ‘C’ with Disjoint Metadata
• Key issue: type casts

struct foo{
int* arr;
size_t b;

} ;

struct bar{
size_t x;
size_t y;

};
struct foo *p;
struct bar *q;
...
q = (struct bar *) p;
…
*q = …

m
em

ory
arr

b

metab
p

Disallow casts??
Insight: casts can only manufacture pointers but not
metadata

Accesses to Disjoint Metadata Space

int *p;
int **q;
…
p_meta = load_meta(q);
p = *q;

Metadata accesses using address of the pointer than
what pointer points to

How Do We Organize the Metadata Space?

• Shadow entire virtual address space
• Allocate entries on demand
• 32 bytes metadata for every word
• 12 x86 instructions

• (6 loads/stores, 2 adds, 2 shift, mov and mask)

+

base bound

r+

trie root

address

key lock

Translation using a trie, a page table like structure

Performance Design Choice

• Design choice: Metadata only with pointers
• Programs primarily manipulate data
• Metadata propagation on only pointer operations

• Type casts between pointers is allowed

• Casting an integer to a pointer is disallowed
• Pointer obtains NULL/Invalid metadata
• Dereferencing such a pointer would raise exception

Disjoint metadata accesses are expensive
Metadata with non-pointers Performance overhead

Pointer Metadata Allocation/Propagation

p_base = p;
p_bound = p + size;
p_key = allocate_key():
p_lock = allocate_lock();

check_double_frees();

*(p_lock) = INVALID_KEY;
deallocate_lock(p_lock);

p = malloc(size);

Memory allocation

free(p);

Memory deallocation

Pointer
arithmetic/copi

es

p = q + 10;
p_base = q_base;
p_bound = q_bound;
p_key = q_key;
p_lock = q_lock;

M
eta

data

m
em

ory

id

bal

0x10
0x11
0x12

0x38

0
0x13
0x14
0x15
0x16
0x17

memory

q

0x13 0x15 #42

0x15 0x17

disjoint metadata

#420xF8

0xF8

#420xF8

base bound lock key

p

Summary: Pointer Based Disjoint Metadata

• Disjoint shadow space
• Memory layout intact
• Protects metadata
• Allocated on-demand
• But, hurts locality

• Bounds Check
• Easy once you have

“base” & “bound”

• Temporal Check
Check if
key = mem[lock]

Presenter
Presentation Notes
need to mention about arbitrary casts and its implication on cast somewhere

Where to Perform Pointer-Based
Checking?

• Source-to-source translation
– Pointers are readily available
– Added code confuses the optimizer

• Compiler instrumentation
– Pointers need to be optimized
– Can operate on optimized code

• Binary instrumentation
– Pointer identification is hard
– Extra code translates into overhead

• Hardware injection
– Pointers identifications is hard
– Streamlined injection necessary

Compiler
instrumentation
provides best
of both

Hardware
injection
can streamline
the extra code
added

SoftBoundCETS Compiler
Instrumentation

• Goal: reduce performance overheads

– How to identify pointers?
– How to propagate metadata across function calls?
– How to perform instrumentation?

• Approach: perform instrumentation over LLVM IR

Background on LLVM IR – C Code
struct node_t {

size_t value;
struct node_t* next;

};
typedef struct node_t node;

int main(){
node* fptr = malloc(sizeof(node));
node* ptr = fptr;
fptr -> value = 0;
fptr -> next = NULL;

for (i= 0; i < 128 ; i++){
node* new_ptr = malloc(sizeof(node));
new_ptr->value = I;
new_ptr->next = ptr;
ptr = new_ptr;

}
fptr->next = ptr;

}

Pointer storePointer store

Presenter
Presentation Notes
Just a pedantic example to illustrate how we use pointer information

Background on LLVM IR

%node_t = type {i64, node_t*};

define i32 @main(i32 %argc, i8** argv){
entry:
%call = call i8* malloc(i64 16)
%0 = bitcast i8* %cal to %node_t*
%value = gep %node_t* %0, i32 0, i32 0
store i64 0, i64* %value
%next = gep %node_t* %0, i32 0, i32 1
store %node_t* null, %node_t** next
br label %for.cond

for.cond:
%ptr.0 = phi %node_t* [%0, %entry], [%1, %for.inc]
%i.0 = phi i64 [0, %entry], [%inc, %for.inc]
%cmp = icmp ult i64 %i.0, 128
br i1 %cmp, label %for.body, label %for.end

Explicitly typed

IR is in SSA
phi nodes merge values
from predecessors

Pointer arithmetic
using gep

How Do We Instrument IR Code?

• Introduce calls to C functions
– Checks, metadata accesses all written in C code

• SoftBoundCETS Instrumentation Algorithm
– Operates in three passes
– First pass introduces temporaries for metadata
– Second pass populates the phi nodes
– Third pass introduces calls to check handlers

Simple linear passes over the code, enabled us extract an
implementation from the proofs

Exploring the Hardware/Software Continuum

Compiler does pointer identification and metadata propagation and hardware
accelerates checks

Runtime Overhead
HighNone

Hardware
Modifications

High

None
SoftBound

Watchdog

Task Watchdog
[ISCA 2012]

SoftBoundCETS
[PLDI 2009, ISMM 2010]

Pointer
detection

Conservative Accurate with
compiler

Op Insertion Micro-op injection Compiler inserted
instructions

Metadata
Propagation

Copy elimination using
register renaming

Standard dataflow
analysis

Checks + fast checks (implicit)
- no check optimization

- Instruction overhead
+ Check optimization

Metadata
Loads/Stores

+ Fast lookups - Instruction overhead

Hardware vs Software Implementation

Presenter
Presentation Notes
Add ISCA 2012/PLDI 2009

Task Watchdog
[ISCA 2012]

SoftBoundCETS
[PLDI 2009, ISMM 2010]

Pointer
detection

Conservative Accurate with
compiler

Op Insertion Micro-op injection Compiler inserted
instructions

Metadata
Propagation

Copy elimination using
register renaming

Standard dataflow
analysis

Checks + fast checks (implicit)
- no check optimization

- Instruction overhead
+ Check optimization

Metadata
Loads/Stores

+ Fast lookups - Instruction overhead

Hardware vs Software Implementation

Presenter
Presentation Notes
Add ISCA 2012/PLDI 2009

Task Watchdog
[ISCA 2012]

SoftBoundCETS
[PLDI 2009, ISMM 2010]

Pointer
detection

Conservative Accurate with
compiler

Op Insertion Micro-op injection Compiler inserted
instructions

Metadata
Propagation

Copy elimination using
register renaming

Standard dataflow
analysis

Checks + fast checks (implicit)
- no check optimization

- Instruction overhead
+ Check optimization

Metadata
Loads/Stores

+ Fast lookups - Instruction overhead

Hardware vs Software Implementation

Presenter
Presentation Notes
Add ISCA 2012/PLDI 2009

Task Watchdog
[ISCA 2012]

SoftBoundCETS
[PLDI 2009, ISMM 2010]

Pointer
detection

Conservative Accurate with
compiler

Op Insertion Micro-op injection Compiler inserted
instructions

Metadata
Propagation

Copy elimination using
register renaming

Standard dataflow
analysis

Checks + fast checks (implicit)
- no check optimization

- Instruction overhead
+ Check optimization

Metadata
Loads/Stores

+ Fast lookups - Instruction overhead

Hardware vs Software Implementation

Hardware can
accelerate checks &
metadata accesses

Compiler can do
these tasks
efficiently

Presenter
Presentation Notes
Add ISCA 2012/PLDI 2009

Hardware Support

Hardware acceleration with new instructions for compiler
based pointer checking

Instructions added to the ISA
– Bounds check & use-after-free check instructions
– Metadata load/store instructions

Pack four words of metadata into a single wide register
– Single wide load/store  eliminates port pressure
– Avoid implicit registers for the new instructions
– Reduces spills/restores due to register pressure

Spatial (Bound) Check Instruction

int p;
…

p = *q;

if(q < q_base ||
q + sizeof(int) >= q_bound){
abort();

}

5 instructions for the spatial
check

Schk.size imm(r1), ymm0

Supports all addressing modes
Size of the access encoded
Operates only on registers
Executes as one micro-op
Latency is not critical

Temporal (Use-After-Free) Check
Instruction

int p;
…

p = *q;

if(q_key!= *q_lock){
abort();

}

3 instructions for the
temporal check

Tchk ymm0

Performs a memory access
Executes as two micro-ops
Latency is not critical

Metadata Load/Store Instructions

int *p, **q;
…

p = *q;
..

*q = p

p_metadata = table_lookup(q);

14 instructions for the
metadata load

Metaload %ymm0, imm(%rax)

Performs a wide load/store
Executes as two micro-ops

– address computation
-- wide load/store uop

Shadow space for the metadata

table_lookup(q) = p_metadata Metastore imm(%rax), %ymm0

16 instructions for the
metadata store

See Papers For ….

• Compiler transformation to use wide metadata
• Metadata organization
• Check elimination effectiveness
• Effectiveness in detecting errors
• Narrow mode instructions
• Comparison of related work

Evaluation

• Three questions
– Effective in detecting errors?
– Compatible with existing C code?
– Reasonable overheads?

Memory Safety Violation Detection

• Effective in detecting errors?
– NIST Juliet Suite – 50K memory safety errors
– Synthetic attacks [Wilander et al]
– Bugbench [Lu05]: overflows from real applications

– Found unknown new bugs
• H.264, Parser, Twolf , Em3d, Go, Nullhttpd, Wu-ftpd, ..

Benchmark SoftBoundCETS Mudflap Valgrind

Go Yes No No
Compress Yes Yes Yes
Polymorph Yes Yes No
Gzip Yes Yes Yes

Source Compatibility Experiments

• Compatible with existing C code?

• Approximately one million lines of code total
– 35 benchmarks from Spec, Olden
– BugBench, GNU core utils, Tar, Flex, …
– Multithreaded HTTP Server with CGI support
– FTP server

• Separate compilation supported
– Creation of safe libraries possible

Presenter
Presentation Notes
why bounds checking is hard, hard to typecheck, why is it hard to propagate metadata

Evaluation – Performance Overheads

0

50

100

150

200

250
SoftBoundCETS WatchdogLite

• Timing simulations of wide-issue out-of-order x86 core

Average
overhead

of 29%

• Average performance overhead: 29%
• Reduces average from 90% with SoftBoundCETS

Remaining Instruction Overhead

0
20
40
60
80

100
120
140
160

lb
m go

eq
ua

ke

hm
m

er

m
ilc

sj
en

g

bz
ip

2

am
m

p

co
m

p

h2
64 ar

t

vp
r

lib
qu

an
t

m
cf

pa
rs

er av
g

metastore
metaload
t-chk
s-chk
Lea
Spill
Others

• Average instruction overhead reduces to 81% (from 180% with
SoftBoundCETS)

• Spatial checks  better check optimizations can help
• Lea instructions  change code generator

Intel MPX

• In July 2013, Intel MPX announced ISA specification
– Similar hardware/software approach

• Pointer-based checking: base and bounds metadata
• Disjoint metadata in shadow space
• Adds new instructions for bounds checking

– Differences
• Adds new bounds registers vs reusing existing AVX registers
• Changes calling conventions to avoid shadow stack
• Backward compatibility features

– Interoperability with un-instrumented and instrumented code
– Validates metadata by redundantly encoding pointer in metadata
– Calling un-instrumented code clears bounds registers

• Does not perform use-after-free checking

Conclusion

• Safety against buffer overflows & use-after-free errors
– Pointer based checking
– Bounds and identifier metadata
– Disjoint metadata

• SoftBoundCETS with hardware instructions
– Four new instructions for compiler-based pointer checking
– Four new instructions
– Packs the metadata in wide registers

Leveraging the compiler
enables our proposal to use
simpler hardware for
comprehensive memory
safety Runtime OverheadHighNone

Hardware
Modifications

High

None

Ideal

Presenter
Presentation Notes
Add conclusion section

Thank You

Try SoftBoundCETS for LLVM-3.4

http://github.com/santoshn/softboundcets-34/

	Complete Memory-Safety with SoftBoundCETS
	Project goal:�Make C/C++ safe and secure
	Security Vulnerabilities due to Lack of Memory Safety
	Slide Number 4
	Slide Number 5
	Background on Enforcing Memory Safety
	Bounds Violation Example
	Dangling Pointer Example
	What is Void * C?
	Abstractions Not Enforced!
	Pointer Based Checking
	Slide Number 12
	SoftBound Base/Bound Storage
	Pointer Dereference Checks
	Pointer Creation
	Base/Bound Metadata Propagation
	Pointers to Structure Fields
	Pointer Based Checking: Temporal Safety
	Pointer Based Checking: Lock & Key
	Disjoint Metadata
	 Real World ‘C’ with Disjoint Metadata
	Accesses to Disjoint Metadata Space
	How Do We Organize the Metadata Space?
	Performance Design Choice
	Pointer Metadata Allocation/Propagation
	Summary: Pointer Based Disjoint Metadata
	Where to Perform Pointer-Based Checking?
	SoftBoundCETS Compiler Instrumentation
	Background on LLVM IR – C Code
	Background on LLVM IR
	How Do We Instrument IR Code?
	Slide Number 32
	Hardware vs Software Implementation
	Hardware vs Software Implementation
	Hardware vs Software Implementation
	Hardware vs Software Implementation
	Hardware Support
	Slide Number 38
	Slide Number 39
	Slide Number 40
	See Papers For ….
	Evaluation
	Slide Number 43
	Memory Safety Violation Detection
	Source Compatibility Experiments
	Evaluation – Performance Overheads
	Remaining Instruction Overhead
	Intel MPX
	Conclusion
	Thank You	

