
Authentication and key-exchange protocols
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Agenda
• Key exchange basics
• Simple protocols and replay attacks
• Needham Schroeder and refinements
• Public-key exchange protocols
• Man-in-the-middle attacks
• Certificates
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Notation
• X → Y : { Z || W } kX,Y

– X sends Y the message produced by concatenating Z
and W enciphered by key kX,Y, which is shared by 
users X and Y

• A → T : { Z } kA || { W } kA,T
– A sends T a message consisting of the concatenation 

of Z enciphered using kA, A’s key, and W enciphered 
using kA,T, the key shared by A and T

• r1, r2 nonces (nonrepeating random numbers)
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Session, Interchange Keys
• Alice wants to send a message m to Bob

– Assume public key encryption
– Alice generates a random cryptographic key ks and 

uses it to encipher m
• To be used for this message only
• Called a session key

– She enciphers ks with Bob;s public key kB
• kB enciphers all session keys Alice uses to communicate with 

Bob
• Called an interchange key

– Alice sends { m } ks { ks } kB
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Benefits
• Limits amount of traffic enciphered with single 

key
– Standard practice, to decrease the amount of traffic 

an attacker can obtain
• Prevents some attacks

– Example: Alice will send Bob message that is either 
“BUY” or “SELL”. Eve computes possible ciphertexts { 
“BUY” } kB and  { “SELL” } kB. Eve intercepts 
enciphered message, compares, and gets plaintext at 
once
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Key Exchange Algorithms
• Goal: Alice, Bob get shared key

– Key cannot be sent in clear
• Attacker can listen in
• Key can be sent enciphered, or derived from exchanged data 

plus data not known to an eavesdropper
– Alice, Bob may trust third party
– All cryptosystems, protocols publicly known

• Only secret data is the keys, ancillary information known only 
to Alice and Bob needed to derive keys

• Anything transmitted is assumed known to attacker
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Classical Key Exchange

• Bootstrap problem: how do Alice, Bob 
begin?
– Alice can’t send it to Bob in the clear!

• Assume trusted third party, Cathy
– Alice and Cathy share secret key kA

– Bob and Cathy share secret key kB

• Use this to exchange shared key ks
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Simple Protocol

Alice Cathy
{ request for session key to Bob } kA

Alice Cathy
{ ks } kA || { ks } kB

Alice Bob
{ ks } kB
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Problems

• How does Bob know he is talking to Alice?
– Replay attack: Eve records message from 

Alice to Bob, later replays it; Bob may think 
he’s talking to Alice, but he isn’t

– Session key reuse: Eve replays message 
from Alice to Bob, so Bob re-uses session key

• Protocols must provide authentication and 
defense against replay
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Needham-Schroeder

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || ks } kB } kA

Alice Bob
{ Alice || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks
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Argument: Alice talking to Bob
• Second message

– Enciphered using key only she, Cathy knows
• So Cathy enciphered it

– Response to first message
• As r1 in it matches r1 in first message

• Third message
– Alice knows only Bob can read it

• As only Bob can derive session key from message
– Any messages enciphered with that key are from Bob
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Argument: Bob talking to Alice
• Third message

– Enciphered using key only he, Cathy know
• So Cathy enciphered it

– Names Alice, session key
• Cathy provided session key, says Alice is other party

• Fourth message
– Uses session key to determine if it is replay from Eve

• If not, Alice will respond correctly in fifth message
• If so, Eve can’t decipher r2 and so can’t respond, or responds 

incorrectly
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Denning-Sacco Modification
• Assumption: all keys are secret
• Question: suppose Eve can obtain session key. 

How does that affect protocol?
– In what follows, Eve knows ks

Eve Bob
{ Alice || ks } kB

Eve Bob
{ r2 } ks

Eve Bob
{ r2 – 1 } ks
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Solution
• In protocol above, Eve impersonates Alice
• Problem: replay in third step

– First in previous slide
• Solution: use time stamp T to detect replay
• Proposed by Denning and Sacco
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Needham-Schroeder with 
Denning-Sacco Modification

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || T || ks } kB } kA

Alice Bob
{ Alice || T || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks
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Problem with timestamps?
• If clocks not synchronized, may either reject 

valid messages or accept replays
– Parties with either slow or fast clocks vulnerable to 

replay
– Resetting clock does not eliminate vulnerability

• We’ll see timestamps used in Kerberos as well.
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Otway-Rees Protocol

• Corrects problem
– That is, Eve replaying the third message in 

the protocol
• Does not use timestamps

– Not vulnerable to the problems that Denning-
Sacco modification has

• Uses integer n to associate all messages 
with particular exchange
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The Protocol

Alice Bob
n || Alice || Bob || { r1 || n || Alice || Bob } kA

Cathy Bobn || Alice || Bob || { r1 || n || Alice || Bob } kA ||
{ r2 || n || Alice || Bob } kB

Cathy Bobn || { r1 || ks } kA || { r2 || ks } kB

Alice Bob
n || { r1 || ks } kA
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Argument: Alice talking to Bob

• Fourth message
– If n matches first message, Alice knows it is 

part of this protocol exchange
– Cathy generated ks because only she, Alice 

know kA

– Enciphered part belongs to exchange as r1
matches r1 in encrypted part of first message
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Argument: Bob talking to Alice

• Third message
– If n matches second message, Bob knows it is 

part of this protocol exchange
– Cathy generated ks because only she, Bob 

know kB

– Enciphered part belongs to exchange as r2
matches r2 in encrypted part of second 
message
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Replay Attack
• Eve acquires old ks, message in third step

– n || { r1 || ks } kA || { r2 || ks } kB

• Eve forwards appropriate part to Alice
– Alice has no ongoing key exchange with Bob: n

matches nothing, so is rejected
– Alice has ongoing key exchange with Bob: n does not 

match, so is again rejected
• If replay is for the current key exchange, and Eve sent the 

relevant part before Bob did, Eve could simply listen to traffic; 
no replay involved
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Public-Key Key Exchange
• Here interchange keys known

– eA, eB Alice and Bob’s public keys known to all
– dA, dB Alice and Bob’s private keys known only to 

owner
• Simple protocol

– ks is desired session key

Alice Bob
{ ks } eB
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Problem and Solution
• Vulnerable to forgery or replay

– Because eB known to anyone, Bob has no assurance 
that Alice sent message

• Simple fix uses Alice’s private key
– ks is desired session key

Alice Bob
{ { ks } dA } eB
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Public-Key Distribution of Secret 
Keys

• if have securely exchanged public-keys:

Presenter
Presentation Notes
Stallings Fig 10.6. See text for details of steps in protocol. Note that these steps correspond to final 3 of Fig 10.3, hence can get both secret key exchange and authentication in a single protocol.
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Notes
• Can include message enciphered with ks

• Assumes Bob has Alice’s public key, and vice 
versa
– If not, each must get it from public server
– If keys not bound to identity of owner, attacker Eve 

can launch a man-in-the-middle attack (next slide; 
Cathy is public server providing public keys)

• Solution to this (binding identity to keys) discussed later as 
public key infrastructure (PKI)
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Man-in-the-Middle Attack

Alice Cathysend Bob’s public key

Eve Cathysend Bob’s public key

Eve Cathy
eB

Alice
eE Eve

Alice Bob
{ ks } eE

Eve Bob
{ ks } eB

Eve intercepts request

Eve intercepts message
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Cryptographic Key Infrastructure
• Goal: bind identity to key
• Classical: not possible as all keys are shared

– Use protocols to agree on a shared key (see earlier)
• Public key: bind identity to public key

– Crucial as people will use key to communicate with 
principal whose identity is bound to key

– Erroneous binding means no secrecy between 
principals

– Assume principal identified by an acceptable name
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Certificates

• Create token (message) containing
– Identity of principal (here, Alice)
– Corresponding public key
– Timestamp (when issued)
– Other information (perhaps identity of signer)

signed by trusted authority (here, Cathy)
CA = { eA || Alice || T } dC
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Use
• Bob gets Alice’s certificate

– If he knows Cathy’s public key, he can decipher the 
certificate

• When was certificate issued?
• Is the principal Alice?

– Now Bob has Alice’s public key
• Problem: Bob needs Cathy’s public key to 

validate certificate
– Problem pushed “up” a level
– Solution: Signature chains
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Certificate Signature Chains
• Create certificate

– Generate hash of certificate
– Encipher hash with issuer’s private key

• Validate
– Obtain issuer’s public key
– Decipher enciphered hash
– Recompute hash from certificate and compare

• Problem: getting issuer’s public key
• Popular implementation/standard: X509
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Issuers

• Certification Authority (CA): entity that 

issues certificates

– Multiple issuers pose validation problem

– Alice’s CA is Cathy; Bob’s CA is Don; how can 

Alice validate Bob’s certificate?

– Have Cathy and Don cross-certify

• Each issues certificate for the other
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Validation and Cross-Certifying
• Certificates:

– Cathy<<Alice>>
– Dan<<Bob>
– Cathy<<Dan>>
– Dan<<Cathy>>

• Alice validates Bob’s certificate
– Alice obtains Cathy<<Dan>>
– Alice uses (known) public key of Cathy to validate 

Cathy<<Dan>>
– Alice uses Cathy<<Dan>> to validate Dan<<Bob>>
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Key Revocation
• Certificates invalidated before expiration

– Usually due to compromised key
– May be due to change in circumstance (e.g.,

someone leaving company)
• Problems

– Entity revoking certificate authorized to do so
– Revocation information circulates to everyone fast 

enough
• Network delays, infrastructure problems may delay 

information
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CRLs
• Certificate revocation list lists certificates that are 

revoked
• X.509: only certificate issuer can revoke 

certificate
– Added to CRL

• PGP: signers can revoke signatures; owners can 
revoke certificates, or allow others to do so
– Revocation message placed in PGP packet and 

signed
– Flag marks it as revocation message
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