
Authentication and key-exchange protocols

2

Agenda
• Key exchange basics
• Simple protocols and replay attacks
• Needham Schroeder and refinements
• Public-key exchange protocols
• Man-in-the-middle attacks
• Certificates

3

Notation
• X → Y : { Z || W } kX,Y

– X sends Y the message produced by concatenating Z
and W enciphered by key kX,Y, which is shared by
users X and Y

• A → T : { Z } kA || { W } kA,T
– A sends T a message consisting of the concatenation

of Z enciphered using kA, A’s key, and W enciphered
using kA,T, the key shared by A and T

• r1, r2 nonces (nonrepeating random numbers)

4

Session, Interchange Keys
• Alice wants to send a message m to Bob

– Assume public key encryption
– Alice generates a random cryptographic key ks and

uses it to encipher m
• To be used for this message only
• Called a session key

– She enciphers ks with Bob;s public key kB
• kB enciphers all session keys Alice uses to communicate with

Bob
• Called an interchange key

– Alice sends { m } ks { ks } kB

5

Benefits
• Limits amount of traffic enciphered with single

key
– Standard practice, to decrease the amount of traffic

an attacker can obtain
• Prevents some attacks

– Example: Alice will send Bob message that is either
“BUY” or “SELL”. Eve computes possible ciphertexts {
“BUY” } kB and { “SELL” } kB. Eve intercepts
enciphered message, compares, and gets plaintext at
once

6

Key Exchange Algorithms
• Goal: Alice, Bob get shared key

– Key cannot be sent in clear
• Attacker can listen in
• Key can be sent enciphered, or derived from exchanged data

plus data not known to an eavesdropper
– Alice, Bob may trust third party
– All cryptosystems, protocols publicly known

• Only secret data is the keys, ancillary information known only
to Alice and Bob needed to derive keys

• Anything transmitted is assumed known to attacker

7

Classical Key Exchange

• Bootstrap problem: how do Alice, Bob
begin?
– Alice can’t send it to Bob in the clear!

• Assume trusted third party, Cathy
– Alice and Cathy share secret key kA

– Bob and Cathy share secret key kB

• Use this to exchange shared key ks

8

Simple Protocol

Alice Cathy
{ request for session key to Bob } kA

Alice Cathy
{ ks } kA || { ks } kB

Alice Bob
{ ks } kB

9

Problems

• How does Bob know he is talking to Alice?
– Replay attack: Eve records message from

Alice to Bob, later replays it; Bob may think
he’s talking to Alice, but he isn’t

– Session key reuse: Eve replays message
from Alice to Bob, so Bob re-uses session key

• Protocols must provide authentication and
defense against replay

10

Needham-Schroeder

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || ks } kB } kA

Alice Bob
{ Alice || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

11

Argument: Alice talking to Bob
• Second message

– Enciphered using key only she, Cathy knows
• So Cathy enciphered it

– Response to first message
• As r1 in it matches r1 in first message

• Third message
– Alice knows only Bob can read it

• As only Bob can derive session key from message
– Any messages enciphered with that key are from Bob

12

Argument: Bob talking to Alice
• Third message

– Enciphered using key only he, Cathy know
• So Cathy enciphered it

– Names Alice, session key
• Cathy provided session key, says Alice is other party

• Fourth message
– Uses session key to determine if it is replay from Eve

• If not, Alice will respond correctly in fifth message
• If so, Eve can’t decipher r2 and so can’t respond, or responds

incorrectly

13

Denning-Sacco Modification
• Assumption: all keys are secret
• Question: suppose Eve can obtain session key.

How does that affect protocol?
– In what follows, Eve knows ks

Eve Bob
{ Alice || ks } kB

Eve Bob
{ r2 } ks

Eve Bob
{ r2 – 1 } ks

14

Solution
• In protocol above, Eve impersonates Alice
• Problem: replay in third step

– First in previous slide
• Solution: use time stamp T to detect replay
• Proposed by Denning and Sacco

15

Needham-Schroeder with
Denning-Sacco Modification

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || T || ks } kB } kA

Alice Bob
{ Alice || T || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

16

Problem with timestamps?
• If clocks not synchronized, may either reject

valid messages or accept replays
– Parties with either slow or fast clocks vulnerable to

replay
– Resetting clock does not eliminate vulnerability

• We’ll see timestamps used in Kerberos as well.

17

Otway-Rees Protocol

• Corrects problem
– That is, Eve replaying the third message in

the protocol
• Does not use timestamps

– Not vulnerable to the problems that Denning-
Sacco modification has

• Uses integer n to associate all messages
with particular exchange

18

The Protocol

Alice Bob
n || Alice || Bob || { r1 || n || Alice || Bob } kA

Cathy Bobn || Alice || Bob || { r1 || n || Alice || Bob } kA ||
{ r2 || n || Alice || Bob } kB

Cathy Bobn || { r1 || ks } kA || { r2 || ks } kB

Alice Bob
n || { r1 || ks } kA

19

Argument: Alice talking to Bob

• Fourth message
– If n matches first message, Alice knows it is

part of this protocol exchange
– Cathy generated ks because only she, Alice

know kA

– Enciphered part belongs to exchange as r1
matches r1 in encrypted part of first message

20

Argument: Bob talking to Alice

• Third message
– If n matches second message, Bob knows it is

part of this protocol exchange
– Cathy generated ks because only she, Bob

know kB

– Enciphered part belongs to exchange as r2
matches r2 in encrypted part of second
message

21

Replay Attack
• Eve acquires old ks, message in third step

– n || { r1 || ks } kA || { r2 || ks } kB

• Eve forwards appropriate part to Alice
– Alice has no ongoing key exchange with Bob: n

matches nothing, so is rejected
– Alice has ongoing key exchange with Bob: n does not

match, so is again rejected
• If replay is for the current key exchange, and Eve sent the

relevant part before Bob did, Eve could simply listen to traffic;
no replay involved

22

Public-Key Key Exchange
• Here interchange keys known

– eA, eB Alice and Bob’s public keys known to all
– dA, dB Alice and Bob’s private keys known only to

owner
• Simple protocol

– ks is desired session key

Alice Bob
{ ks } eB

23

Problem and Solution
• Vulnerable to forgery or replay

– Because eB known to anyone, Bob has no assurance
that Alice sent message

• Simple fix uses Alice’s private key
– ks is desired session key

Alice Bob
{ { ks } dA } eB

24

Public-Key Distribution of Secret
Keys

• if have securely exchanged public-keys:

Presenter
Presentation Notes
Stallings Fig 10.6. See text for details of steps in protocol. Note that these steps correspond to final 3 of Fig 10.3, hence can get both secret key exchange and authentication in a single protocol.

25

Notes
• Can include message enciphered with ks

• Assumes Bob has Alice’s public key, and vice
versa
– If not, each must get it from public server
– If keys not bound to identity of owner, attacker Eve

can launch a man-in-the-middle attack (next slide;
Cathy is public server providing public keys)

• Solution to this (binding identity to keys) discussed later as
public key infrastructure (PKI)

26

Man-in-the-Middle Attack

Alice Cathysend Bob’s public key

Eve Cathysend Bob’s public key

Eve Cathy
eB

Alice
eE Eve

Alice Bob
{ ks } eE

Eve Bob
{ ks } eB

Eve intercepts request

Eve intercepts message

27

Cryptographic Key Infrastructure
• Goal: bind identity to key
• Classical: not possible as all keys are shared

– Use protocols to agree on a shared key (see earlier)
• Public key: bind identity to public key

– Crucial as people will use key to communicate with
principal whose identity is bound to key

– Erroneous binding means no secrecy between
principals

– Assume principal identified by an acceptable name

28

Certificates

• Create token (message) containing
– Identity of principal (here, Alice)
– Corresponding public key
– Timestamp (when issued)
– Other information (perhaps identity of signer)

signed by trusted authority (here, Cathy)
CA = { eA || Alice || T } dC

29

Use
• Bob gets Alice’s certificate

– If he knows Cathy’s public key, he can decipher the
certificate

• When was certificate issued?
• Is the principal Alice?

– Now Bob has Alice’s public key
• Problem: Bob needs Cathy’s public key to

validate certificate
– Problem pushed “up” a level
– Solution: Signature chains

30

Certificate Signature Chains
• Create certificate

– Generate hash of certificate
– Encipher hash with issuer’s private key

• Validate
– Obtain issuer’s public key
– Decipher enciphered hash
– Recompute hash from certificate and compare

• Problem: getting issuer’s public key
• Popular implementation/standard: X509

31

Issuers

• Certification Authority (CA): entity that

issues certificates

– Multiple issuers pose validation problem

– Alice’s CA is Cathy; Bob’s CA is Don; how can

Alice validate Bob’s certificate?

– Have Cathy and Don cross-certify

• Each issues certificate for the other

32

Validation and Cross-Certifying
• Certificates:

– Cathy<<Alice>>
– Dan<<Bob>
– Cathy<<Dan>>
– Dan<<Cathy>>

• Alice validates Bob’s certificate
– Alice obtains Cathy<<Dan>>
– Alice uses (known) public key of Cathy to validate

Cathy<<Dan>>
– Alice uses Cathy<<Dan>> to validate Dan<<Bob>>

33

Key Revocation
• Certificates invalidated before expiration

– Usually due to compromised key
– May be due to change in circumstance (e.g.,

someone leaving company)
• Problems

– Entity revoking certificate authorized to do so
– Revocation information circulates to everyone fast

enough
• Network delays, infrastructure problems may delay

information

34

CRLs
• Certificate revocation list lists certificates that are

revoked
• X.509: only certificate issuer can revoke

certificate
– Added to CRL

• PGP: signers can revoke signatures; owners can
revoke certificates, or allow others to do so
– Revocation message placed in PGP packet and

signed
– Flag marks it as revocation message

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

