
MAC, HMAC, Hash functions, DSA, SSL

Vinod Ganapathy

Message Authentication

• message authentication is concerned with:
– protecting the integrity of a message
– validating identity of originator
– non-repudiation of origin (dispute resolution)

• will consider the security requirements
• then three alternative functions used:

– message encryption
– message authentication code (MAC)
– hash function

Presenter
Presentation Notes
Up till now, have been concerned with protecting message content (ie secrecy) by encrypting the message. Will now consider how to protect message integrity (ie protection from modification), as well as confirming the identity of the sender. Generically this is the problem of message authentication, and in eCommerce applications is arguably more important than secrecy.

Message Encryption

• message encryption by itself also provides
a measure of authentication

• if symmetric encryption is used then:
– receiver know sender must have created it
– since only sender and receiver now key used
– know content cannot have been altered
– if message has suitable structure, redundancy

or a checksum to detect any changes

Message Encryption

• if public-key encryption is used:
– encryption provides no confidence of sender
– since anyone potentially knows public-key
– however if

• sender signs message using their private-key
• then encrypts with recipients public key
• have both secrecy and authentication

– again need to recognize corrupted messages
– but at cost of two public-key uses on message

Message Authentication Code
(MAC)

• generated by an algorithm that creates a
small fixed-sized block
– depending on both message and some key
– like encryption though need not be reversible

• appended to message as a signature
• receiver performs same computation on

message and checks it matches the MAC
• provides assurance that message is

unaltered and comes from sender

Message Authentication Codes

Presenter
Presentation Notes
One authentication technique involves the use of a secret key to generate a small block of data, known as a message authentication code, that is appended to the message. This technique assumes that two communicating parties, say A and B, share a common secret key KAB. When A has a message to send to B, it calculates the message authentication code as a function of the message and the key: MACM = F(KAB, M). The message plus code are transmitted to the intended recipient. The recipient performs the same calculation on the received message, using the same secret key, to generate a new message authentication code. The received code is compared to the calculated code, as shown here in Figure 2.4 from the text. If we assume that only the receiver and the sender know the identity of the secret key, and if the received code matches the calculated code, then:
The receiver is assured that the message has not been altered.
The receiver is assured that the message is from the alleged sender.
 If the message includes a sequence number, then the receiver can be assured of the proper sequence.
A number of algorithms could be used to generate the code. The NIST specification, FIPS PUB 113, recommends the use of DES. DES is used to generate an encrypted version of the message, and the last number of bits of ciphertext are used as the code. A 16- or 32-bit code is typical.

Message Authentication Codes
• as shown the MAC provides authentication
• can also use encryption for secrecy

– generally use separate keys for each
– can compute MAC either before or after encryption
– is generally regarded as better done before

• why use a MAC?
– sometimes only authentication is needed
– sometimes need authentication to persist longer than

the encryption (eg. archival use)
• note that a MAC is not a digital signature

MAC Properties

• a MAC is a cryptographic checksum
MAC = CK(M)
– condenses a variable-length message M
– using a secret key K
– to a fixed-sized authenticator

• is a many-to-one function
– potentially many messages have same MAC
– but finding these needs to be very difficult

Requirements for MACs

• taking into account the types of attacks
• need the MAC to satisfy the following:

1. knowing a message and MAC, is infeasible
to find another message with same MAC

2. MACs should be uniformly distributed
3. MAC should depend equally on all bits of the

message

Using Symmetric Ciphers for MACs

• can use any block cipher chaining mode
and use final block as a MAC

• Data Authentication Algorithm (DAA) is
a widely used MAC based on DES-CBC
– using IV=0 and zero-pad of final block
– encrypt message using DES in CBC mode
– and send just the final block as the MAC

• or the leftmost M bits (16≤M≤64) of final block

Presenter
Presentation Notes
Can also use block cipher chaining modes to create a separate authenticator, by just sending the last block. However this suffers from being a bit too small for acceptable use today.

Digital Signatures

• have looked at message authentication
– but does not address issues of lack of trust

• digital signatures provide the ability to:
– verify author, date & time of signature
– authenticate message contents
– be verified by third parties to resolve disputes

• hence include authentication function with
additional capabilities

Digital Signature Properties

• must depend on the message signed
• must use information unique to sender

– to prevent both forgery and denial
• must be relatively easy to produce
• must be relatively easy to recognize & verify
• be computationally infeasible to forge

– with new message for existing digital signature
– with fraudulent digital signature for given message

• be practical save digital signature in storage

Direct Digital Signatures

• involve only sender & receiver
• assumed receiver has sender’s public-key
• digital signature made by sender signing

entire message or hash with private-key
• can encrypt using receivers public-key
• important that sign first then encrypt

message & signature
• security depends on sender’s private-key

Presenter
Presentation Notes
Direct Digital Signatures involve the direct application of public-key algs. But are dependent on security of the sender’s private-key. Have problems if lost/stolen and signatures forged. Need time-stamps and timely key revocation.

Digital Signature Standard (DSS)

• US Govt approved signature scheme FIPS 186
• uses the SHA hash algorithm
• designed by NIST & NSA in early 90's
• DSS is the standard, DSA is the algorithm
• creates a 320 bit signature, but with 512-1024 bit

security
• security depends on difficulty of computing

discrete logarithms

Presenter
Presentation Notes
DSA is the US Govt approved signature scheme - designed to provide strong signatures without allowing easy use for encryption. The signature scheme has advantages, being both smaller (320 vs 1024bit) and faster (much of the computation is done modulo a 160 bit number) than RSA.

Digital Signature Algorithm (DSA)

• creates a 320 bit signature
• with 512-1024 bit security
• smaller and faster than RSA
• a digital signature scheme only
• security depends on difficulty of computing

discrete logarithms
• variant of ElGamal & Schnorr schemes

Presenter
Presentation Notes
Will discuss the original DSS algorithm. The DSA signature scheme has advantages, being both smaller (320 vs 1024bit) and faster (much of the computation is done modulo a 160 bit number), over RSA. Unlike RSA, it cannot be used for encryption or key exchange. Nevertheless, it is a public-key technique. The DSA is based on the difficulty of computing discrete logarithms, and is based on schemes originally presented by ElGamal [ELGA85] and Schnorr [SCHN91].

Digital Signature Algorithm (DSA)

Presenter
Presentation Notes
DSA differs from RSA in how the message signature is generated and validated, as shown in Stallings Figure 13.1.
RSA signatures encrypt the message hash with the private key to create a signature, which is then verified by being decrypted with the public key to compare to a recreated hash value.
DSA signatures use the message hash, global public values, private key & random k to create a 2 part signature (s,r). This is verified by computing a function of the message hash, public key, r and s, and comparing the result with r. The proof that this works is complex, but it achieves its aims!

Digression - Discrete Logarithms

• the inverse problem to exponentiation is to find
the discrete logarithm of a number modulo p

• that is to find x such that y = gx (mod p)
• this is written as x = logg y (mod p)
• if g is a primitive root then it always exists,

otherwise it may not, eg.
x = log3 4 mod 13 has no answer
x = log2 3 mod 13 = 4 by trying successive powers
• whilst exponentiation is relatively easy, finding

discrete logarithms is generally a hard problem

Presenter
Presentation Notes
Discrete logarithms are fundamental to a number of public-key algorithms, including Diffie-Hellman key exchange and the digital signature algorithm (DSA).
Discrete logs (or indices) share the properties of normal logarithms, and are quite useful. The logarithm of a number is defined to be the power to which some positive base (except 1) must be raised in order to equal that number. If working with modulo arithmetic, and the base is a primitive root, then an integral discrete logarithm exists for any residue.
However whilst exponentiation is relatively easy, finding discrete logs is not, in fact is as hard as factoring a number. This is an example of a problem that is "easy" one way (raising a number to a power), but "hard" the other (finding what power a number is raised to giving the desired answer). Problems with this type of asymmetry are very rare, but are of critical usefulness in modern cryptography.

DSA Key Generation

Presenter
Presentation Notes
DSA typically uses a common set of global parameters (p,q,g) for a community of clients, as shown. Then each DSA uses chooses a random private key x, and computes their public key as shown. The calculation of the public key y given x is relatively straightforward. However, given the public key y, it is computationally infeasible to determine x, which is the discrete logarithm of y to base g, mod p.

DSA Signature Creation

Presenter
Presentation Notes
To create a signature, a user calculates two quantities, r and s, that are functions of the public key components (p,q,g), the user’s private key (x), the hash code of the message H(M), and an additional integer k that should be generated randomly or pseudo-randomly and be unique for each signing. This is similar to ElGamal signatures, with the use of a per message temporary signature key k, but doing calculations first mod p, then mod q to reduce the size of the result. The signature (r,s) is then sent with the message to the recipient. Note that computing r only involves calculation mod p and does not depend on message, hence can be done in advance. Similarly with randomly choosing k’s and computing their inverses.

DSA Signature Verification

Presenter
Presentation Notes
At the receiving end, verification is performed using the formulas shown. The receiver generates a quantity v that is a function of the public key components, the sender’s public key, and the hash of the incoming message. If this quantity matches the r component of the signature, then the signature is validated. Note that the difficulty of computing discrete logs is why it is infeasible for an opponent to recover k from r, or x from s. Note also that nearly all the calculations are mod q, and hence are much faster save for the last step.
The structure of this function is such that the receiver can recover r using the incoming message and signature, the public key of the user, and the global public key.I t is certainly not obvious that such a scheme would work. A proof is provided at this book’s Web site.

Hash Algorithms

• Hash Functions
– condense arbitrary size message to fixed size
– by processing message in blocks
– through some compression function
– either custom or block cipher based

• Examples:
– MD4, MD5, SHA1

Presenter
Presentation Notes
Now look at important examples of both secure hash functions and message authentication codes (MACs).
Traditionally, most hash functions that have achieved widespread use rely on a compression function specifically designed for the hash function. Another approach is to use a symmetric block cipher as the compression function.
MACs also fall into two categories: some use a hash algorithm such as SHA as the core of the MAC algorithm, others use a symmetric block cipher in a cipher block chaining mode.

Secure Hash Functions

Presenter
Presentation Notes
An alternative to the message authentication code is the one-way hash function. As with the message authentication code, a hash function accepts a variable-size message M as input and produces a fixed-size message digest H(M) as output (Figure 2.5). Unlike the MAC, a hash function does not also take a secret key as input. To authenticate a message, the message digest is sent with the message in such a way that the message digest is authentic.

Hash Function Requirements

• applied to any size data
• H produces a fixed-length output.
• H(x) is relatively easy to compute for any given x
• one-way property

– computationally infeasible to find x such that H(x) = h
• weak collision resistance

– computationally infeasible to find y ≠ x such that
H(y) = H(x)

• strong collision resistance
– computationally infeasible to find any pair (x, y) such

that H(x) = H(y)

Presenter
Presentation Notes
The purpose of a hash function is to produce a "fingerprint" of a file, message, or other block of data. To be useful for message authentication, a hash function H must have the properties listed here. The first three properties are requirements for the practical application of a hash function to message authentication. The fourth property is the one-way property: it is easy to generate a code given a message, but virtually impossible to generate a message given a code. This property is important if the authentication technique involves the use of a secret value (such as shown in Figure 2.5c). The fifth property guarantees that it is impossible to find an alternative message with the same hash value as a given message. This prevents forgery when an encrypted hash code is used (as in Figures 2.5a and b). A hash function that satisfies the first five properties in the preceding list is referred to as a weak hash function. If the sixth property is also satisfied, then it is referred to as a strong hash function. The sixth property protects against a sophisticated class of attack known as the birthday attack. In addition to providing authentication, a message digest also provides data integrity. It performs the same function as a frame check sequence: if any bits in the message are accidentally altered in transit, the message digest will be in error.

Hash Algorithms

• see similarities in the evolution of hash
functions & block ciphers
– increasing power of brute-force attacks
– leading to evolution in algorithms
– from DES to AES in block ciphers
– from MD4 & MD5 to SHA-1 & RIPEMD-160 in

hash algorithms
• likewise tend to use common iterative

structure as do block ciphers

MD5

• designed by Ronald Rivest (the R in RSA)
• latest in a series of MD2, MD4
• produces a 128-bit hash value
• until recently was the most widely used

hash algorithm
– in recent times have both brute-force &

cryptanalytic concerns
• specified as Internet standard RFC1321

Presenter
Presentation Notes
MD5 is the current, and very widely used, member of Rivest’s family of hash functions.

MD5 Overview
1. pad message so its length is 448 mod 512
2. append a 64-bit length value to message
3. initialize 4-word (128-bit) MD buffer (A,B,C,D)
4. process message in 16-word (512-bit) blocks:

– using 4 rounds of 16 bit operations on message
block & buffer

– add output to buffer input to form new buffer value
5. output hash value is the final buffer value

Presenter
Presentation Notes
The padded message is broken into 512-bit blocks, processed along with the buffer value using 4 rounds, and the result added to the input buffer to make the new buffer value. Repeat till run out of message, and use final buffer value as hash. nb. due to padding always have a full final block (with length in it).

MD5 Overview

Presenter
Presentation Notes
Stallings Fig 12.1

MD5 Compression Function

• each round has 16 steps of the form:
a = b+((a+g(b,c,d)+X[k]+T[i])<<<s)

• a,b,c,d refer to the 4 words of the buffer,
but used in varying permutations
– note this updates 1 word only of the buffer
– after 16 steps each word is updated 4 times

• where g(b,c,d) is a different nonlinear
function in each round (F,G,H,I)

• T[i] is a constant value derived from sin

Presenter
Presentation Notes
Each round mixes the buffer input with the next "word" of the message in a complex, non-linear manner. A different non-linear function is used in each of the 4 rounds (but the same function for all 16 steps in a round). The 4 buffer words (a,b,c,d) are rotated from step to step so all are used and updated. g is one of the primitive functions F,G,H,I for the 4 rounds respectively. X[k] is the kth 32-bit word in the current message block. T[i] is the ith entry in the matrix of constants T. The addition of varying constants T and the use of different shifts helps ensure it is extremely difficult to compute collisions.

MD5 Compression Function

Strength of MD5
• MD5 hash is dependent on all message bits
• Rivest claims security is good as can be
• known attacks are:

– Berson 92 attacked any 1 round using differential
cryptanalysis (but can’t extend)

– Boer & Bosselaers 93 found a pseudo collision (again
unable to extend)

– Dobbertin 96 created collisions on MD compression
function (but initial constants prevent exploit)

– Wang et al. 04 created collisions on entire MD5 in
less than one hour using an IBM p960 cluster

Presenter
Presentation Notes
Some progress has been made analysing MD5, which along with the hash size of 128-bits means its starting to look too small. Hence interest in hash functions that create larger hashes.

Secure Hash Algorithm (SHA-1)
• SHA was designed by NIST & NSA in 1993,

revised 1995 as SHA-1
• US standard for use with DSA signature scheme

– standard is FIPS 180-1 1995, also Internet RFC3174
– nb. the algorithm is SHA, the standard is SHS

• produces 160-bit hash values
• now the generally preferred hash algorithm
• based on design of MD4 with key differences

Presenter
Presentation Notes
SHA is one of the newer generation of hash functions, more resistant to cryptanalysis, and now probably preferred for new applications.

SHA Overview
1. pad message so its length is 448 mod 512
2. append a 64-bit length value to message
3. initialize 5-word (160-bit) buffer (A,B,C,D,E) to
(67452301,efcdab89,98badcfe,10325476,c3d2e1f0)
1. process message in 16-word (512-bit) chunks:

– expand 16 words into 80 words by mixing & shifting
– use 4 rounds of 20 bit operations on message block

& buffer
– add output to input to form new buffer value

2. output hash value is the final buffer value

Presenter
Presentation Notes
Note that the SHA-1 Overview is very similar to that of MD5.

You can try both on any Linux
machine

bash$ cat helloworld.txt

“Hello world!”

bash$ md5sum helloworld.txt

78890504b184be1407cc2880363ddf10

bash$ sha1sum helloworld.txt

398dc9eb139cebe2ba1d8791259440ede011cfba

SHA-1 verses MD5

• brute force attack is harder (160 vs 128
bits for MD5)

• not vulnerable to any known attacks
(compared to MD4/5)

• a little slower than MD5 (80 vs 64 steps)
• both designed as simple and compact
• optimized for big endian CPU's (vs MD5

which is optimised for little endian CPU’s)

Presenter
Presentation Notes
Compare using the design goals listed earlier.
SHA-1 is probbaly the preferred hash function for new applications. Currently no problems are known with it.

Keyed Hash Functions as MACs
• want a MAC based on a hash function

– because hash functions are generally faster
– code for crypto hash functions widely

available
• hash includes a key along with message
• original proposal:
KeyedHash = Hash(Key|Message)

– some weaknesses were found with this
• eventually led to development of HMAC

Presenter
Presentation Notes
In recent years, there has been increased interest in developing a MAC derived from a cryptographic hash function. A hash function such as SHA was not designed for use as a MAC and cannot be used directly for that purpose because it does not rely on a secret key. There have been a number of proposals for the incorporation of a secret key into an existing hash algorithm, originally by just pre-pending a key to the message. Problems were found with these earlier, simpler proposals, but they resulted in the development of HMAC.

HMAC Overview

Presenter
Presentation Notes
Stallings Figure 12.10 shows the structure of HMAC, which implements the function:
HMACK = Hash[(K+ XOR opad) || Hash[(K+ XOR ipad) || M)]
elements are:
K+ is K padded with zeros on the left so that the result is b bits in length
ipad is a pad value of 36 hex repeated to fill block
opad is a pad value of 5C hex repeated to fill block
M is the message input to HMAC (including the padding specified in the embedded hash function)

HMAC
• specified as Internet standard RFC2104
• uses hash function on the message:
HMACK = Hash[(K+ XOR opad) ||

Hash[(K+ XOR ipad)||M)]]

• where K+ is the key padded out to size
• and opad, ipad are specified padding constants
• overhead is just 3 more hash calculations than

the message needs alone
• any hash function can be used

– eg. MD5, SHA-1, RIPEMD-160, Whirlpool

Presenter
Presentation Notes
The idea of a keyed hash evolved into HMAC, designed to overcome some problems with the original proposals. It involves hashing padded versions of the key concatenated with the message, and then with another outer hash of the result prepended by another padded variant of the key. The hash function need only be used on 3 more blocks than when hashing just the original message (for the two keys + inner hash). HMAC can use any desired hash function, and has been shown to have the same security as the underlying hash function. Can choose the hash function to use based on speed/security concerns.

HMAC Security

• proved security of HMAC relates to that of
the underlying hash algorithm

• attacking HMAC requires either:
– brute force attack on key used
– birthday attack (but since keyed would need

to observe a very large number of messages)
• choose hash function used based on

speed verses security constraints

Presenter
Presentation Notes
The appeal of HMAC is that its designers have been able to prove an exact relationship between the strength of the embedded hash function and the strength of HMAC. The security of a MAC function is generally expressed in terms of the probability of successful forgery with a given amount of time spent by the forger and a given number of message-MAC pairs created with the same key. Have two classes of attacks: brute force attack on key used which has work of order 2^n; or a birthday attack which requires work of order 2^(n/2) - but which requires the attacker to observe 2^n blocks of messages using the same key - very unlikely. So even MD5 is still secure for use in HMAC given these constraints.

Message
Auth

Presenter
Presentation Notes
Figure 2.6 illustrates three ways in which the message can be authenticated. The message digest can be encrypted using conventional encryption (part a); if it is assumed that only the sender and receiver share the encryption key, then authenticity is assured. The message can also be encrypted using public-key encryption (part b); this is explained later. The public-key approach has two advantages: it provides a digital signature as well as message authentication; and it does not require the distribution of keys to communicating parties. These two approaches have an advantage over approaches that encrypt the entire message in that less computation is required. Nevertheless, there has been interest in developing a technique that avoids encryption altogether. Part c shows a technique that uses a hash function but no encryption for message authentication. This technique assumes that two communicating parties, say A and B, share a common secret value SAB. When A has a message to send to B, it calculates the hash function over the concatenation of the secret value and the message: MDM = H(SAB||M). It then sends [M||MDM] to B. Because B possesses SAB, it can recompute H(SAB||M) and verify MDM. Because the secret value itself is not sent, it is not possible for an attacker to modify an intercepted message. As long as the secret value remains secret, it is also not possible for an attacker to generate a false message.

Secure Sockets Layer (SSL)
• transport layer security service

– originally developed by Netscape
– version 3 designed with public input

• subsequently became Internet standard
RFC2246: Transport Layer Security (TLS)

• use TCP to provide a reliable end-to-end service
• may be provided in underlying protocol suite
• or embedded in specific packages

Presenter
Presentation Notes
One of the most widely used security services is the Secure Sockets Layer (SSL) and the follow-on Internet standard known as Transport Layer Security (TLS), the latter defined in RFC 2246. SSL is a general-purpose service implemented as a set of protocols that rely on TCP. At this level, there are two implementation choices. For full generality, SSL (or TLS) could be provided as part of the underlying protocol suite and therefore be transparent to applications. Alternatively, SSL can be embedded in specific packages. For example, Netscape and Microsoft Explorer browsers come equipped with SSL, and most Web servers have implemented the protocol. We discusses SSLv3. Only minor changes are found in TLS.

SSL Protocol Stack

Presenter
Presentation Notes
SSL is designed to make use of TCP to provide a reliable end-to-end secure service. SSL is not a single protocol but rather two layers of protocols, as illustrated in Figure 21.1 from the text.
The SSL Record Protocol provides basic security services to various higher-layer protocols. In particular, the Hypertext Transfer Protocol (HTTP), which provides the transfer service for Web client/server interaction, can operate on top of SSL. Three higher-layer protocols are defined as part of SSL: the Handshake Protocol, the Change Cipher Spec Protocol, and the Alert Protocol. These SSL-specific protocols are used in the management of SSL exchanges and are examined later in this section.
Two important SSL concepts are the SSL connection and the SSL session:
• SSL Connection: is a network transport that provides a suitable type of service, such connections are transient, peer-to-peer relationships, associated with one session
• SSL Session: is an association between a client and a server, created by the Handshake Protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection.
Between any pair of parties (applications such as HTTP on client and server), there may be multiple secure connections. In theory, there may also be multiple simultaneous sessions between parties, but this feature is not used in practice.

SSL Record Protocol Services
• message integrity

– using a MAC with shared secret key
– similar to HMAC but with different padding

• confidentiality
– using symmetric encryption with a shared

secret key defined by Handshake Protocol
– AES, IDEA, RC2-40, DES-40, DES, 3DES,

Fortezza, RC4-40, RC4-128
– message is compressed before encryption

Presenter
Presentation Notes
SSL Record Protocol defines two services for SSL connections:
• Message Integrity: The Handshake Protocol also defines a shared secret key that is used to form a message authentication code (MAC), which is similar to HMAC
• Confidentiality: The Handshake Protocol defines a shared secret key that is used for conventional encryption of SSL payloads. The message is compressed before being concatenated with the MAC and encrypted, with a range of ciphers being supported as shown.

SSL Record Protocol Operation

Presenter
Presentation Notes
Figure 21.2 indicates the overall operation of the SSL Record Protocol. The first step is fragmentation. Each upper-layer message is fragmented into blocks of 214 bytes (16,384 bytes) or less. Next, compression is optionally applied. The next step in processing is to compute a message authentication code over the compressed data. Next, the compressed message plus the MAC are encrypted using symmetric encryption. The final step of SSL Record Protocol processing is to prepend a header, and then transmit the resulting unit in a TCP segment. Received data are decrypted, verified, decompressed, and reassembled and then delivered to higher-layer applications.

SSL Change Cipher Spec Protocol

• one of 3 SSL specific protocols which use
the SSL Record protocol

• a single message
• causes pending state to become current
• hence updating the cipher suite in use

Presenter
Presentation Notes
The Change Cipher Spec Protocol is one of the three SSL-specific protocols that use the SSL Record Protocol, and it is the simplest, consisting of a single message. Its purpose is to cause the pending state to be copied into the current state, which updates the cipher suite to be used on this connection.

SSL Alert Protocol
• conveys SSL-related alerts to peer entity
• severity

• warning or fatal
• specific alert

• fatal: unexpected message, bad record mac,
decompression failure, handshake failure, illegal
parameter

• warning: close notify, no certificate, bad certificate,
unsupported certificate, certificate revoked,
certificate expired, certificate unknown

• compressed & encrypted like all SSL data

Presenter
Presentation Notes
The Alert Protocol is used to convey SSL-related alerts to the peer entity. As with other applications that use SSL, alert messages are compressed and encrypted, as specified by the current state.
Each message in this protocol consists of two bytes. The first byte takes the value warning(1) or fatal(2) to convey the severity of the message. If the level is fatal, SSL immediately terminates the connection. Other connections on the same session may continue, but no new connections on this session may be established. The second byte contains a code that indicates the specific alert. An example of a fatal alert is an incorrect MAC. An example of a nonfatal alert is a close_notify message, which notifies the recipient that the sender will not send any more messages on this connection.

SSL Handshake Protocol
• allows server & client to:

– authenticate each other
– to negotiate encryption & MAC algorithms
– to negotiate cryptographic keys to be used

• comprises a series of messages in phases
1. Establish Security Capabilities
2. Server Authentication and Key Exchange
3. Client Authentication and Key Exchange
4. Finish

Presenter
Presentation Notes
The most complex part of SSL is the Handshake Protocol. This protocol allows the server and client to authenticate each other and to negotiate an encryption and MAC algorithm and cryptographic keys to be used to protect data sent in an SSL record. The Handshake Protocol is used before any application data is transmitted. The Handshake Protocol consists of a series of messages exchanged by client and server, which can be viewed in 4 phases:
Phase 1. Establish Security Capabilities - used by the client to initiate a logical connection and to establish the security capabilities that will be associated with it
Phase 2. Server Authentication and Key Exchange - the server begins this phase by sending its certificate if it needs to be authenticated.
Phase 3. Client Authentication and Key Exchange - the client should verify that the server provided a valid certificate if required and check that the server_hello parameters are acceptable
Phase 4. Finish - this phase completes the setting up of a secure connection. The client sends a change_cipher_spec message and copies the pending CipherSpec into the current CipherSpec

SSL Handshake Protocol

Presenter
Presentation Notes
Figure 21.3 shows the initial exchange needed to establish a logical connection between client and server. The exchange can be viewed as having the four phases discussed previously.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

