Containers —
namespaces and cgroups

--- Ajay Nayak

Motivation

Why containers?

* Important use-case: implementing lightweight virtualization
* Virtualization == isolation of processes

* Traditional virtualization: Hypervisors

* Processes isolated by running in separate guest kernels that sit on top of host
kernel

* |solation is “all or nothing”

* \Virtualization via containers

* Permit isolation of processes running on a single kernel be per-global-
resource --- via namespaces

* Restrict resource consumption --- via cgroups

Outline

* Concepts

* Linux Namespaces
* UTS
* UID
* Mount

* C(ontrol) groups
* Food for thought

Introduction

Concepts

* |solation
e Goal: Limit “WHAT” a process can use
* “wrap” some global system resource to provide resource isolation
* Namespaces jump into the picture

e Control
* Goal: Limit “HOW MUCH” a process can use

* A mechanism for aggregating/partitioning sets of tasks, and all their future
children, into hierarchical groups

* Assign specialized behaviour to the group
e C(ontrol) groups jump into the picture

https://github.com/nayakajay/linux-namespaces

https://github.com/nayakajay/linux-namespaces

Namespaces

Linux hamespaces

e Supports following NS types: (CLONE_FLAG; symlink)

* Mount (CLONE_NEWNS; /proc/pid/ns/mnt)

e UTS (CLONE_NEWUTS; /proc/pid/ns/uts)

* |PC (CLONE_NEWIPC; /proc/pid/ns/ipc)

* PID (CLONE_NEWPID; /proc/pid/ns/pid)

* Network (CLONE_NEWNET; /proc/pid/ns/net)

* User (CLONE_NEWUSER; /proc/pid/ns/user)

e Cgroup (CLONE_NEWCGROUP; /proc/pid/ns/cgroup)

* Time (CLONE_NEWTIME; /proc/pid/ns/time) <= very new!

Magic symlinks, which tells the namespace the process is in
shl$ readlink /proc/self/ns/uts

uts :[4026531838]

Context that kernel uses to resolve values

Namespaces

New tools to use

syscalls
* clone() — associates a new child
process with few NS(s)

* unshare() — new NS(s) with the
current process

 setns() — move calling process to
existing NS

Shell commands
* unshare - create new NS(s) and
execute a command in the NS(s)

* nsenter - enter existing NS(s) and
execute a command

Namespaces

Unix Timesharing System N@amespace

e Simplest Namespace

* |solate two system identifiers
* nodename — system hostname
* domainname — NIS domain name

* Why is it needed?

 nodename could be used with DHCP, to obtain IP address for container

Namespaces

Unix Timesharing System N@amespace (Demo)

Shell 1 Shell 2
Show hostname of initial UTS NS # Create new (u)ts namespace
shl$ hostname S PS1 =’sh2% ’ sudo unshare -u bash
wolverine # Show hostname of initial UTS NS

sh2% hostname
wolverine
Change hostname

sh2% hostname subzero

Verify if changed? # Verify change
shl$ hostname sh2% hostname
wolverine subzero

Need (CAP_SYS ADMIN) capability to create a UTS NS

Namespaces

User namespace

* |solate user and group ID number spaces
* A process’s UIDs and GIDs can be different inside and outside user namespace

e User NSs have a hierarchical relationship

* Maintain mapping:
e User ID: /proc/PID/uid_map
* Group ID: /proc/PID/gid _map

* Most interesting use case:
e QOutside user NS: process has normal unprivileged UID

* Inside user NS: process has UID O
e Superuser privileges for operations inside user NS!

Namespaces

User namespace - hierarchy

Initial user NS
creator eUID: O
uid_map: 0 0 4294967295
gid map: 0 0 4254567295

User NS "X" User NS "Y"
creator eUID: 1000 creator eUID: 1001
uid_map: 0 1000 1 uid _map: 0 1001 1
gid map: 0 1000 1 gid map: 0 1001 1

User NS "X2"
creator eUID: 1000
uid map: 0 0 1
gid map: 0 0 1

Image credits: Michael Kerrisk

Namespaces

User namespace (Demo)

Shell 1

Get username and id

shl$ whoami

ajayn

shls$ id

uid=1008 (ajayn) gi1d=1008 (ajayn)

Use Shell 2 process id

Shell 2

Create new (U)ser namespace

$ PS1 =’sh2% ’ unshare -U bash

Get ID inside new User NS

sh2% id

uid=65534 (nobody) gi1d=65534 (nogroup)
Get PID

sh2% echo $$

4

Namespaces

User namespace (Demo)

Shell 1 Shell 2
Edit uid map file for shell 2
shl$ echo “0 1008 1” >
/proc/4/uid map ..
— # Get ID inside new User NS
sh2% id

uid=0 (root) gid=65534 (nogroup)

Yay, we are now root, but only
restricted in this shell!

uid_map for user ids, but group is still nogroup --- set something!

Namespaces

Mount hamespace

* |solation of set of mount points (MPs) seen by process(es)

* MP is a tuple that includes:
 Mount source (e.g., device)
* Pathname
* ID of parent mount

* Process’s view of filesystem (FS) tree is defined by (hierarchically related) set
of MPs

* Mount NSs allow processes to have distinct sets of MPs
* Processes in different mount NSs see different FS trees

Namespaces

Mount namespace — syscalls

* mount() and umount() affect processes in same mount NS as caller

* pivot_root()
* Takes 2 arguments --- new _root and put _old

* Mount root FS of calling process to put old
* Mount FS pointed by new root as current root FS at “/”

Namespaces

Mount namespace (Demo)

Shell 1 Shell 2
Get mount information # Create new (m)ount namespace
shl$ cat /proc/S/mounts S PS1 =’sh2% ’ sudo unshare -m bash
Get mount information
/dev/sdal sh2% cat /proc/SS/mounts
/dev/sdal

Create a minimal installation “rootfs” >> next slide

Namespaces

Mount namespace (Demo)

Create a minimal root installation

$> wget http://dl-cdn.alpinelinux.org/alpine/v3.10/releases/x86 64/alpine-
minirootfs-3.10.1-x86 64.tar.gz

Create rootfs directory, for new root argument to pivot root syscall

S> mkdir rootfs
Untar the contents to rootfs directory

$> tar -xzf alpine-minirootfs-3.10.1-x86 64.tar.gz -C rootfs

Namespaces

Mount namespace (Demo)

Shell 1 Shell 2
Get mount information # Make rootfs directory as new root
shl$ cat /proc/$$/mounts sh2% mount --bind rootfs rootfs
. sh2% cd rootfs
/dev/sdal sh2% mkdir put old

sh2% pivot root . put old
sh2% cd /

Unmount put old

sh2% umount -1 put old

Get mount information?

sh2% cat /proc/$$/mounts

Namespaces

Mount namespace (Demo)

Shell 1
Get mount information

shl$ cat /proc/$$/mounts

/dev/sdal

What happens to /proc now?

Shell 2

Make rootfs directory as new root
sh2% mount --bind rootfs rootfs
sh2% cd rootfs

sh2% mkdir put old

sh2% pivot root . put old

sh2% cd /

Unmount put old

sh2% umount -1 put old

Get mount information?

sh2% cat /proc/$$/mounts

C(ontrol) groups

C(ontrol) groups

* Originally developed by Google

* The framework provides the following
* Resource limiting, prioritization, accounting, control

* Two principle components
e Group: processes bound to set of parameters or limits

* (Resource) controller: kernel component that controls or monitors processes
in a cgroup
* memory: limits memory usage
* cpuacct: accounts for CPU usage

C(ontrol) groups

C(ontrol) groups — more tools

cgroup folder format /sys/group/cgroup/controller/group
$> sudo mkdir /sys/fs/cgroup/memory/foo

Each file inside the group is controller.keyword

$> echo 500000 > /sys/fs/cgroup/memory/foo/memory.limit in bytes

Verify the setting. Returns in multiple of 4KB. (Why?)
$> cat /sys/fs/cgroup/memory/foo/memory.limit in bytes
503808 << 492KB

Add a process ID to foo group’s memory controller

$> echo 12345 > /sys/fs/cgroup/memory/foo/cgroup.procs

C(ontrol) groups
C(ontrol) groups — [libcgroup-tools]

Libraries make life easier (and difficult too!)

$> sudo cgcreate —-g memory,cpu:limit group

Set some limits to these controllers

$> sudo cgset -r memory.limit in bytes=$((500%1024*1024)) limit group

Run an executable under the group and controllers

$> sudo cgexec —-g memory,cpu:limit group bash

Add an existing process to the group, using process ID

$> sudo cgclassify —g memory,cpu:limit group 12345

C(ontrol) groups

C(ontrol) groups — (Demo)

Create a cgroup with memory controller (say, foo)

$> sudo cgcreate —g memory:foo

Set some limits to these controllers (say, 10MB)

$> sudo cgset -r memory.limit in bytes=$((10*1024*1024)) foo
Run an executable under the group and controller, within memory limit
$> sudo cgexec —g memory:foo exec

This program terminated happily!

Now let’s try to restrict this program to very less memory!

C(ontrol) groups

C(ontrol) groups — (Demo)

Set some small limits to these controllers (say, 4KB)

$> sudo cgset -r memory.limit in bytes=$((4*1024)) foo

Run an executable under the group and controller, within memory limit

$> sudo cgexec —g memory:foo exec
Killed

Kernel’s Out-of-Memory (OOM) Killer was invoked!

That’s all folks ... not really. There is tons more to explore!

Concept check

* The processor i.e., CPU is a global resource as it is used by all the processes
sharing a host.

 Why is processor control part of CGroup rather than namespace functionality, i.e.,
why is processor an accounting problem rather than a visibility problem?

* |Isita “HOW MUCH” problem or a “WHAT” problem?

Finale

Food for thought

* Imagine you need to create a system where:
You need to create a sandbox for an arbitrary program
Should have limited view of the system (filesystem, network, other processes)

Must use only few processors (say, 2) and not more than 100MB of memory,
with restricted CPU time.

Restrict as few syscalls as possible

* Where can this kind of system be useful?
* What are the limitations?

** spoilers on the next slide **

Finale

Food for thought

* Imagine you need to create a system where:
* You need to create a sandbox for an arbitrary program
» Should have limited view of the system (filesystem, network, other processes)

* Must use only few processors (say, 2) and not more than 100MB of memory,
with restricted CPU time.

» Restrict as few syscalls as possible

* Where can this kind of system be useful?
* Programming platforms!

* What are the limitations?
* Think dependencies!

Links

Useful links

 Namespaces: https://lwn.net/Articles/531114/
e Cgroups: https://lwn.net/Articles/604609/
* Seccomp: https://lwn.net/Articles/656307/

https://medium.com/@teddyking/linux-namespaces-850489d3ccf

https://opensource.com/article/19/10/namespaces-and-containers-

INUX

http://ifeanyi.co/posts/linux-namespaces-part-1/

https://blog.lizzie.io/linux-containers-in-500-loc.html

https://lwn.net/Articles/531114/
https://lwn.net/Articles/604609/
https://lwn.net/Articles/656307/
https://medium.com/@teddyking/linux-namespaces-850489d3ccf
https://opensource.com/article/19/10/namespaces-and-containers-linux
http://ifeanyi.co/posts/linux-namespaces-part-1/
https://blog.lizzie.io/linux-containers-in-500-loc.html

Acks

Acknowledgements

« Michael Kerrisk (Linux man-pages contributor)

