
Containers –
namespaces and cgroups

--- Ajay Nayak

Why containers?

• Important use-case: implementing lightweight virtualization
• Virtualization == isolation of processes

• Traditional virtualization: Hypervisors
• Processes isolated by running in separate guest kernels that sit on top of host

kernel

• Isolation is “all or nothing”

• Virtualization via containers
• Permit isolation of processes running on a single kernel be per-global-

resource --- via namespaces

• Restrict resource consumption --- via cgroups

Motivation

Outline

• Motivation

• Concepts

• Linux Namespaces
• UTS

• UID

• Mount

• C(ontrol) groups

• Food for thought

Concepts

• Isolation
• Goal: Limit “WHAT” a process can use

• “wrap” some global system resource to provide resource isolation

• Namespaces jump into the picture

• Control
• Goal: Limit “HOW MUCH” a process can use

• A mechanism for aggregating/partitioning sets of tasks, and all their future
children, into hierarchical groups

• Assign specialized behaviour to the group

• C(ontrol) groups jump into the picture

Introduction

https://github.com/nayakajay/linux-namespaces

https://github.com/nayakajay/linux-namespaces

Linux namespaces

• Supports following NS types: (CLONE_FLAG; symlink)
• Mount (CLONE_NEWNS; /proc/pid/ns/mnt)

• UTS (CLONE_NEWUTS; /proc/pid/ns/uts)

• IPC (CLONE_NEWIPC; /proc/pid/ns/ipc)

• PID (CLONE_NEWPID; /proc/pid/ns/pid)

• Network (CLONE_NEWNET; /proc/pid/ns/net)

• User (CLONE_NEWUSER; /proc/pid/ns/user)

• Cgroup (CLONE_NEWCGROUP; /proc/pid/ns/cgroup)

• Time (CLONE_NEWTIME; /proc/pid/ns/time) <= very new!

Namespaces

Magic symlinks, which tells the namespace the process is in

sh1$ readlink /proc/self/ns/uts

uts :[4026531838]

Context that kernel uses to resolve values

New tools to use

syscalls

• clone() – associates a new child
process with few NS(s)

• unshare() – new NS(s) with the
current process

• setns() – move calling process to
existing NS

Shell commands

• unshare - create new NS(s) and
execute a command in the NS(s)

• nsenter - enter existing NS(s) and
execute a command

Namespaces

Unix Timesharing System namespace

• Simplest Namespace

• Isolate two system identifiers
• nodename – system hostname

• domainname – NIS domain name

• Why is it needed?
• nodename could be used with DHCP, to obtain IP address for container

Namespaces

Unix Timesharing System namespace (Demo)

Shell 1
Show hostname of initial UTS NS

sh1$ hostname

wolverine

Verify if changed?

sh1$ hostname

wolverine

Shell 2
Create new (u)ts namespace

$ PS1 =’sh2% ’ sudo unshare -u bash

Show hostname of initial UTS NS

sh2% hostname

wolverine

Change hostname

sh2% hostname subzero

Verify change

sh2% hostname

subzero

Need (CAP_SYS_ADMIN) capability to create a UTS NS

Namespaces

User namespace

• Isolate user and group ID number spaces
• A process’s UIDs and GIDs can be different inside and outside user namespace

• User NSs have a hierarchical relationship

• Maintain mapping:
• User ID: /proc/PID/uid_map

• Group ID: /proc/PID/gid_map

• Most interesting use case:
• Outside user NS: process has normal unprivileged UID

• Inside user NS: process has UID 0

• Superuser privileges for operations inside user NS!

Namespaces

User namespace - hierarchy

Namespaces

Image credits: Michael Kerrisk

User namespace (Demo)

Shell 1
Get username and id

sh1$ whoami

ajayn

sh1$ id

uid=1008(ajayn) gid=1008(ajayn)

Use Shell 2 process id

Shell 2
Create new (U)ser namespace

$ PS1 =’sh2% ’ unshare -U bash

Get ID inside new User NS

sh2% id

uid=65534(nobody) gid=65534(nogroup)

Get PID

sh2% echo $$

4

Namespaces

User namespace (Demo)

Shell 1
Edit uid_map file for shell 2

sh1$ echo “0 1008 1” >

/proc/4/uid_map

Shell 2

Get ID inside new User NS

sh2% id

uid=0(root) gid=65534(nogroup)

Yay, we are now root, but only

restricted in this shell!

Namespaces

uid_map for user ids, but group is still nogroup --- set something!

Mount namespace

• Isolation of set of mount points (MPs) seen by process(es)
• MP is a tuple that includes:

• Mount source (e.g., device)

• Pathname

• ID of parent mount

• Process’s view of filesystem (FS) tree is defined by (hierarchically related) set
of MPs

• Mount NSs allow processes to have distinct sets of MPs
• Processes in different mount NSs see different FS trees

Namespaces

Mount namespace – syscalls

• mount() and umount() affect processes in same mount NS as caller

• pivot_root()
• Takes 2 arguments --- new_root and put_old

• Mount root FS of calling process to put_old

• Mount FS pointed by new_root as current root FS at “/”

Namespaces

Mount namespace (Demo)

Shell 1
Get mount information

sh1$ cat /proc/$$/mounts

…

/dev/sda1

…

Shell 2
Create new (m)ount namespace

$ PS1 =’sh2% ’ sudo unshare -m bash

Get mount information

sh2% cat /proc/$$/mounts

…

/dev/sda1

…

Namespaces

Create a minimal installation “rootfs” >> next slide

Mount namespace (Demo)

Create a minimal root installation

$> wget http://dl-cdn.alpinelinux.org/alpine/v3.10/releases/x86_64/alpine-

minirootfs-3.10.1-x86_64.tar.gz

Create rootfs directory, for new_root argument to pivot_root syscall

$> mkdir rootfs

Untar the contents to rootfs directory

$> tar -xzf alpine-minirootfs-3.10.1-x86_64.tar.gz -C rootfs

Namespaces

Mount namespace (Demo)

Shell 1
Get mount information

sh1$ cat /proc/$$/mounts

…

/dev/sda1

…

Shell 2
Make rootfs directory as new root

sh2% mount --bind rootfs rootfs

sh2% cd rootfs

sh2% mkdir put_old

sh2% pivot_root . put_old

sh2% cd /

Unmount put_old

sh2% umount –l put_old

Get mount information?

sh2% cat /proc/$$/mounts

Namespaces

Mount namespace (Demo)

Shell 1
Get mount information

sh1$ cat /proc/$$/mounts

…

/dev/sda1

…

Shell 2
Make rootfs directory as new root

sh2% mount --bind rootfs rootfs

sh2% cd rootfs

sh2% mkdir put_old

sh2% pivot_root . put_old

sh2% cd /

Unmount put_old

sh2% umount –l put_old

Get mount information?

sh2% cat /proc/$$/mounts

Namespaces

What happens to /proc now?

C(ontrol) groups

• Originally developed by Google

• The framework provides the following
• Resource limiting, prioritization, accounting, control

• Two principle components
• Group: processes bound to set of parameters or limits

• (Resource) controller: kernel component that controls or monitors processes
in a cgroup
• memory: limits memory usage

• cpuacct: accounts for CPU usage

C(ontrol) groups

C(ontrol) groups – more tools

cgroup folder format /sys/group/cgroup/controller/group

$> sudo mkdir /sys/fs/cgroup/memory/foo

Each file inside the group is controller.keyword

$> echo 500000 > /sys/fs/cgroup/memory/foo/memory.limit_in_bytes

Verify the setting. Returns in multiple of 4KB. (Why?)

$> cat /sys/fs/cgroup/memory/foo/memory.limit_in_bytes

503808 << 492KB

Add a process ID to foo group’s memory controller

$> echo 12345 > /sys/fs/cgroup/memory/foo/cgroup.procs

C(ontrol) groups

C(ontrol) groups – [libcgroup-tools]

Libraries make life easier (and difficult too!)

$> sudo cgcreate –g memory,cpu:limit_group

Set some limits to these controllers

$> sudo cgset –r memory.limit_in_bytes=$((500*1024*1024)) limit_group

Run an executable under the group and controllers

$> sudo cgexec –g memory,cpu:limit_group bash

Add an existing process to the group, using process ID

$> sudo cgclassify –g memory,cpu:limit_group 12345

C(ontrol) groups

C(ontrol) groups – (Demo)

Create a cgroup with memory controller (say, foo)

$> sudo cgcreate –g memory:foo

Set some limits to these controllers (say, 10MB)

$> sudo cgset –r memory.limit_in_bytes=$((10*1024*1024)) foo

Run an executable under the group and controller, within memory limit

$> sudo cgexec –g memory:foo exec

This program terminated happily!

Now let’s try to restrict this program to very less memory!

C(ontrol) groups

C(ontrol) groups – (Demo)

Set some small limits to these controllers (say, 4KB)

$> sudo cgset –r memory.limit_in_bytes=$((4*1024)) foo

Run an executable under the group and controller, within memory limit

$> sudo cgexec –g memory:foo exec

Killed

Kernel’s Out-of-Memory (OOM) Killer was invoked!

That’s all folks …… not really. There is tons more to explore!

C(ontrol) groups

Concept check

• The processor i.e., CPU is a global resource as it is used by all the processes
sharing a host.

• Why is processor control part of CGroup rather than namespace functionality, i.e.,
why is processor an accounting problem rather than a visibility problem?

• Is it a “HOW MUCH” problem or a “WHAT” problem?

Revisit

Food for thought

• Imagine you need to create a system where:
• You need to create a sandbox for an arbitrary program

• Should have limited view of the system (filesystem, network, other processes)

• Must use only few processors (say, 2) and not more than 100MB of memory,
with restricted CPU time.

• Restrict as few syscalls as possible

• Where can this kind of system be useful?

• What are the limitations?

** spoilers on the next slide **

Finale

Food for thought

• Imagine you need to create a system where:
• You need to create a sandbox for an arbitrary program

• Should have limited view of the system (filesystem, network, other processes)

• Must use only few processors (say, 2) and not more than 100MB of memory,
with restricted CPU time.

• Restrict as few syscalls as possible

• Where can this kind of system be useful?
• Programming platforms!

• What are the limitations?
• Think dependencies!

Finale

Useful links

• Namespaces: https://lwn.net/Articles/531114/

• Cgroups: https://lwn.net/Articles/604609/

• Seccomp: https://lwn.net/Articles/656307/

• https://medium.com/@teddyking/linux-namespaces-850489d3ccf

• https://opensource.com/article/19/10/namespaces-and-containers-
linux

• http://ifeanyi.co/posts/linux-namespaces-part-1/

• https://blog.lizzie.io/linux-containers-in-500-loc.html

Links

https://lwn.net/Articles/531114/
https://lwn.net/Articles/604609/
https://lwn.net/Articles/656307/
https://medium.com/@teddyking/linux-namespaces-850489d3ccf
https://opensource.com/article/19/10/namespaces-and-containers-linux
http://ifeanyi.co/posts/linux-namespaces-part-1/
https://blog.lizzie.io/linux-containers-in-500-loc.html

Acknowledgements

• Michael Kerrisk (Linux man-pages contributor)

Acks

