
Outline

• Concepts

• Taint analysis on the x86 architecture

• Taint objects and instructions

• Advanced tainting

• References

Motivation

• The motivation for this research came from

the following questions:

– Is it possible to measure the level of

“influence” that external data have over some

application? E.g. network packets or PDF files.

CONCEPTS

Taint Analysis

Information flow

• Follow any application inside a debugger and

you‟ll see that data information is being copied

and modified all the time. In another words,

information is always moving.

• Taint analysis can be seen as a form of Information

Flow Analysis.

• Great definition provided by Dorothy Denning at

the paper “Certification of programs for secure

information flow”:

– “Information flows from object x to object y, denoted

x→y , whenever information stored in x is transferred

to, object y.”

Flow

• “An operation, or series of operations, that uses

the value of some object, say x, to derive a value

for another, say y, causes a flow from x to y.” [1]

Object X

Object Y

Operation

Information

Value derived

from X

Tainted objects

• If the source of the value of the object X is

untrustworthy, we say that X is tainted.

Object X

Untrustworthy

Source

TAINTED

Taint

• To “taint” user data is to insert some kind

of tag or label for each object of the user

data.

• The tag allow us to track the influence of

the tainted object along the execution of

the program.

Taint sources

• Files (*.mp3, *.pdf, *.svg, *.html, *.js, …)

• Network protocols (HTTP, UDP, DNS, ...)

• Keyboard, mouse and touchscreen input

messages

• Webcam

• USB

• Virtual machines (Vmware images)

Taint propagation

• If an operation uses the value of some

tainted object, say X, to derive a value for

another, say Y, then object Y becomes

tainted. Object X tainted the object Y

• Taint operator t

• X → t(Y)

• Taint operator is transitive

– X → t(Y) and Y → t(Z), then X → t(Z)

Taint propagation

Untrusted source #2

K

L

M

X

W

Z

Untrusted source #1

Merge of two different

tainted sources

Applications

• Exploit detection

– If we can track user data, we can detect if non-

trusted data reaches a privileged location

– SQL injection, buffer overflows, XSS, …

– Perl tainted mode

– Detects even unknown attacks!

– Taint analysis for web applications

• Before execution of any statement, the taint

analysis module checks if the statement is

tainted or not! If tainted issue an attack alert!

Applications

• Data Lifetime analysis

– Jin Chow – “Understanding data lifetime via whole

system emulation” – presented at Usenix‟04.

– Created a modified Bochs (TaintBochs) emulator to

taint sensitive data.

– Keep track of the lifetime of sensitive data (passwords,

pin numbers, credit card numbers) stored in the virtual

machine memory

– Tracks data even in the kernel mode.

– Concluded that most applications doesn‟t have any

measure to minimize the lifetime of the sensitive data

in the memory.

TAINT ANALYSIS ON THE X86

ARCHITECTURE

Taint Analysis

Languages

• There are taint analysis tools for C, C++

and Java programming languages.

• In this presentation we will focus on

tainted analysis for the x86 assembly

language.

• The advantages are to not need the source

code of applications and to avoid to create

a parser for each available high-level

language.

x86 instructions

• A taint analysis module for the x86

architecture must at least:

– Identify all the operands of each instruction

– Identify the type of operand

(source/destination)

– Track each tainted object

– Understand the semantics of each instruction

x86 instructions

• A typical instruction like mov eax, 040h has

2 explicit operands like eax and the

immediate value 040h.

• The destination operand:

– eax

• The source operands are:

– eax (register)

– 040h (immediate value)

• Some instructions have implicit operands

x86 instructions

• PUSH EAX

• Explicit operand  EAX

• Semantics:

– ESPESP–4 (subtraction operation)

– SS:[ESP]EAX (move operation)

• Implicit operands  ESP register

 SS segment register

• How to deal with implicit operands or

complex instructions?

Intermediate languages

• Translate the x86 instructions into an

Intermediate language!

• VEX language  Valgrind

• VINE IL  BitBlaze project

• REIL Zynamics BinNavi

Intermediate languages

• With an intermediate language it becomes

much more easy to parse and identify the

operands.

• Example:

– REIL  Uses only 17 instructions!

– For more info about REIL, see Sebastian Porst

presentation today

– sample:

• 1006E4B00: str edi, , edi
• 1006E4D00: sub esp, 4, esp
• 1006E4D01: and esp, 4294967295, esp

TAINT OBJECTS AND

INSTRUCTIONS

Taint Analysis

Taint objects

• In the x86 architecture we have 2 possible

objects to taint:

1. Memory locations

2. Processor registers

• Memory objects:

– Keep track of the initial address of the memory

area

– Keep track of the area size

• Register objects:

– Keep track of the register identifier (name)

– Keep a bit-level track of each bit

Taint objects

• The tainted objects representation presented here keeps track

of each bit.

• Some tools uses a byte-level tracking mechanism (Valgrind

TaintChecker)

Range = [6..7]

Register AL

tainted

Range = [0..4]

tainted

Memory

tainted

area

Size

Instruction analysis

• The ISA (Instruction Set Architecture) of

any platform can be divided in several

categories:

– Assignment instructions (load/store  mov,

xchg, …)

– Boolean instructions

– Arithmetical instructions (add, sub, mul,

div,…)

– String instructions (rep movsb, rep scasb, …)

– Branch instructions (call, jmp, jnz, ret, iret,…)

Memory

Assignment instructions

• mov eax, dword ptr [4C001000h]

tainted

EAX

tainted

Range = [0..31]

MOV

Range =

[4c000000-

4c002000]

Boolean

• Taint analysis of the most common boolean

operators.

– AND

– OR

– XOR

• The analysis must consider if the result of the

boolean operator depends on the value of

the tainted input.

• Special care must be take in the case of both

inputs to be the same tainted object.

Boolean operators

• AND truth table

• If A is tainted

– And B is equal 0, then the result is UNTAINTED

because the result doesn‟t depends on the value of

A.

– And B is equal 1, then the result is TAINTED

because A can control the result of the operation.

A B A and B

0 0 0

0 1 0

1 0 0

1 1 1

Boolean operators

• OR truth table

• If A is tainted

– And B is equal 1, then the result is UNTAINTED

because the result doesn‟t depends on the value of

A.

– And B is equal 0, then the result is TAINTED

because A can control the result of the operation.

A B A or B

0 0 0

0 1 1

1 0 1

1 1 1

Boolean operators

• OR truth table

• If A is tainted

– And B is equal 1, then the result is UNTAINTED

because the result doesn‟t depends on the value of

A.

– And B is equal 0, then the result is TAINTED

because A can control the result of the operation.

A B A or B

0 0 0

0 1 1

1 0 1

1 1 1

Boolean operators

• XOR truth table

• If A is tainted,then all possible results are

TAINTED indepently of any value of B.

• Special case  A XOR A

A B A xor B

0 0 0

0 1 1

1 0 1

1 1 0

Boolean operators

• For the tautology and contradiction

truth tables the result is always

UNTAINTED because none of the inputs

can can influentiate the result.

• In general operations which always results

on constant values produces untainted

objects.

Boolean operators

• and al, 0xdf

AL

tainted

Range = [0..7]

AND

0xDF

Range = [6..7]

0xDF = 11011111

AL

tainted

Range = [0..4]

Boolean operators

• Special case:

xor al, al AL

tainted

Range = [0..7]

AND

AL

UNTAINTED

AL

tainted

Range = [0..7]

A XOR A  0 (constant)

Arithmetical instructions

• add, sub, div, mul, idiv, imul, inc, dec

• All arithmetical instructions can be expressed

using boolean operations.

• ADD expressed using only AND and XOR

operators.

• Generally if one of the operands of an

arithmetical operation is tainted, the result is

also tainted.

• The affected flags in the EFLAGS register are

also tainted.

String instructions

• Strings are just a linear array of characters.

• x86 string instructions – scas, lods, cmps, …

• As a general rule any string instruction

applied to a tainted string results in a

tainted object.

• String operations used to:

– calculate the string size  Tainted

– search for some specific char and set a flag if

found/not found  Tainted

Lifetime of a tainted object

• Creation:

– Assignment from an unstruted object

• mov eax, userbuffer[ecx]

– Assignment from a tainted object

• add eax, eax

• Deletion:

– Assignment from an untainted object

• mov eax, 030h

– Assignment from a tainted object which results in

a constant value.

• xor eax, eax

ADVANCED TAINTING

Taint Analysis

Level of details

• Some taint-based tools does not taint every

object which is affected by a tainted object.

• For example, TaintBochs doesn`t taint

comparison flags (eflags zf, cf, of,...). Others

taint at a byte-level.

• This sometimes provides easy ways to bypass

these tools.

• This section deals with more „agressive‟ taint

methods.

Optional taint objects

• Bit-level tracking instead of a byte-level.

• Conditional branch instructions tainting the

EIP register and all the flag affect in the

eflags register.

• Taint the code execution time.

• Taint at the code-block level of a control

flow graph (CFG).

Comparison instructions

• x86 instructions  cmp, test

• CMP EAX, 020h

pseudo-code:

temp = eax – 20h

set_eflags(temp)

• Lots of flags (Carry, Zero, Parity, Overflow,...)

Conditional branch instructions

• 0100h: cmp eax, 020h

0108h: jnz 0120h

010dh: inc eax

…

…

0120h: xor ebx, ebx

Target if not zero

Target if zero

Conditional branch instructions

• We already taint comparison flags like the

Zero Flag.

• Branch instructions affects the EIP register.

• If a jump is dependent of the flag value,

then the EIP must be tainted.

• How to express in a intermediate language

the conditional jump to show relationship

between the EIP and the ZF?

Tainted EIP

Jump if TRUE

085h: cmp eax, ebx

088h: jnz 100h

08ch: mov ecx, edx

...

100h: xchg ecx, eax

Jump if FALSE

DELTA

Next instruction

after jnz

Formula for conditional jumps

• NIA  Next instruction address after the

conditional jump

• TT  True Target (address of the target

address if comparison is evaluated to TRUE)

• FT  Jump If False Target (008Ch)

• B  Flag value (always Boolean)

• D  Delta = abs (JITT - JIFT)

• We can now express EIP: EIP = NIA + BD

Tainted EIP

TT

085h: cmp eax, ebx

088h: jnz 100h

08ch: mov ecx, edx

...

100h: xchg ecx, eax

FT

DELTA

NIA

DELTA = abs(100h – 88h) = 13h
NIA = 100

EIP  8Ch + ZF * 13h

Tainted EIP

• What is the consequence of Tainted(EIP) =

TRUE?

• The target code blocks of the Control Flow

Graph are TAINTED!

• We can also use taint analysis to solve

reachability problems!

– Can I create a mp3 file which will make

Winamp to execute the code block #357 of

the function playSound()?

Full control

• A tainted EIP is not SUFFICIENT condition

to define a vulnerability. It is necessary that

the contents of the memory pointed by EIP

to also be tainted:

• IF IsVulnerable() = TRUE then

(IsTainted(EIP) = TRUE)

AND

(IsTainted(*EIP) = TRUE)

