Outline

Concepts

aint analysis on the x86 architecture

aint objects and instructions
Advanced tainting
References

Motivation

* The motivation for this research came from
the following questions:
— Is it possible to measure the level of

“influence” that external data have over some
application? E.g. network packets or PDF files.

CONCEPTS

Information flow

* Follow any application inside a debugger and
you'll see that data information is being copied
and modified all the time. In another words,
information is always moving.

* Taint analysis can be seen as a form of Information
Flow Analysis.

* Great definition provided by Dorothy Denning at
the paper “Certification of programs for secure
information flow™:

— “Information flows from object x to object y, denoted
x->y , whenever information stored in x is transferred

to, object y.”

Flow

* “An operation, or series of operations, that uses
the value of some object, say x, to derive a value
for another, say y, causes a flow from x to y.” n

Operation | & |

Information
’ ‘(
Value derived

from X

Tainted objects

 |f the source of the value of the object X is
untrustworthy, we say that X is tainted.

Untrustworthy
Source

=5

Taint

 To “taint” user data is to insert some kind
of tag or label for each object of the user
data.

* The tag allow us to track the influence of
the tainted object along the execution of
the program.

Taint sources

Files (*.mp3, *.pdf, *.svg, *.html, *.js, ...)
Network protocols (HTTP, UDP, DNS, ...)

Keyboard, mouse and touchscreen input
messages

Webcam

USB
Virtual machines (Vmware images)

Taint propagation

If an operation uses the value of some
tainted object, say X, to derive a value for
another, say Y, then object Y becomes
tainted. Object X tainted the object Y

Taint operator ¢

X t(Y)

Taint operator is transitive

— X >t(Y)and Y = t(Z), then X = t(2)

Taint propagation

Untrusted source #1 l ‘

W

‘ Merge of two different

tainted sources

Applications

* Exploit detection

— If we can track user data, we can detect if non-
trusted data reaches a privileged location

— SQL injection, buffer overflows, XSS, ...
— Perl tainted mode

— Detects even unknown attacks!

— Taint analysis for web applications

* Before execution of any statement, the taint
analysis module checks if the statement is
tainted or not! If tainted issue an attack alert!

Applications

* Data Lifetime analysis

— Jin Chow — “Understanding data lifetime via whole
system emulation” — presented at Usenix’04.

— Created a modified Bochs (TaintBochs) emulator to
taint sensitive data.

— Keep track of the lifetime of sensitive data (passwords,
pin numbers, credit card numbers) stored in the virtual
machine memory

— Tracks data even in the kernel mode.

— Concluded that most applications doesn’t have any
measure to minimize the lifetime of the sensitive data
in the memory.

TAINT ANALYSIS ON THE X86
ARCHITECTURE

Languages

* There are taint analysis tools for C, C++
and Java programming languages.

* In this presentation we will focus on
tainted analysis for the x86 assembly
language.

* The advantages are to not need the source
code of applications and to avoid to create
a parser for each available high-level
language.

X86 instructions

A taint analysis module for the x86
architecture must at least:

— ldentify all the operands of each instruction

— ldentify the type of operand
(source/destination)

— Track each tainted object
— Understand the semantics of each instruction

X86 instructions

A typical instruction like mov eax, 040h has
2 explicit operands like eax and the
immediate value 040h.

The destination operand:
— eax

The source operands are:

— eax (register)

— 040h (immediate value)

Some instructions have implicit operands

X86 instructions

PUSH EAX

Explicit operand > EAX

Semantics:

— ESP<ESP-4 (subtraction operation)

— SS: [ESP]=2EAX (move operation)

Implicit operands > ESP register
—> SS segment register

How to deal with implicit operands or
complex instructions?

Intermediate languages

Translate the x86 instructions into an
Intermediate language!

VEX language - Valgrind
VINE IL - BitBlaze project
REIL - Zynamics BinNavi

Intermediate languages

* With an intermediate language it becomes
much more easy to parse and identify the
operands.

* Example:
— REIL = Uses only 17 instructions!

— For more info about REIL, see Sebastian Porst
presentation today

— sample:
« 1006E4BOO: str edi, , edi
» 1006E4D00O: sub esp, 4, esp
e 1006E4DO1: and esp, 4294967295, esp

TAINT OBJECTS AND
INSTRUCTIONS

Taint objects

* |In the x86 architecture we have 2 possible
objects to taint:

1. Memory locations
2. Processor registers
 Memory objects:

— Keep track of the initial address of the memory
area

— Keep track of the area size

* Register objects:
— Keep track of the register identifier (name)
— Keep a bit-level track of each bit

Taint objects

* The tainted objects representation presented here keeps track
of each bit.

* Some tools uses a byte-level tracking mechanism (Valgrind
TaintChecker)

Register AL Memory

tainted
area

Instruction analysis

* The ISA (Instruction Set Architecture) of
any platform can be divided in several
categories:

— Assignment instructions (load/store = mov,
xchg, ...)

— Boolean instructions

— Arithmetical instructions (add, sub, mul,
div,...)

— String instructions (rep movsb, rep scasb, ...)
— Branch instructions (call, jmp, jnz, ret, iret,...)

Assignment instructions

* mov eax, dword ptr [4CO01000h]

Memory
— MoV ~I
EAX -

Range =

[4c000000-
4c¢002000]

Boolean

* Taint analysis of the most common boolean
operators.

— AND
— OR
— XOR
* The analysis must consider if the result of the

boolean operator depends on the value of
the tainted input.

» Special care must be take in the case of both
inputs to be the same tainted object.

Boolean operators

e AND truth table

- O — O
- O O O

e If A is tainted

— And B is equal O, then the result is UNTAINTED
because the result doesn’t depends on the value of
A

— And B is equal 1, then the result is TAINTED
because A can control the result of the operation.

Boolean operators

 OR truth table

- O — O
-—l-—l-—lo

e If A is tainted

— And B is equal 1, then the result is UNTAINTED

because the result doesn’t depends on the value of
A

— And B is equal O, then the result is TAINTED
because A can control the result of the operation.

Boolean operators

 OR truth table

- O — O
-—l-—l-—lo

e If A is tainted

— And B is equal 1, then the result is UNTAINTED

because the result doesn’t depends on the value of
A

— And B is equal O, then the result is TAINTED
because A can control the result of the operation.

Boolean operators

e XOR truth table

o) o) o)
o) 1 1
1 O 1
1 1 o)

* If A is tainted,then all possible results are
TAINTED indepently of any value of B.

» Special case 2> A XOR A

Boolean operators

 For the tautology and contradiction
truth tables the result is always

UNTAINTED because none of the inputs
can can influentiate the result.

* In general operations which always results
on constant values produces untainted

objects.

Boolean operators

* and al, Oxdf

T_ AL

Range = [0..7]

v

Al T OxDF

Range = [6..7] Range = [0..4]

OxDF = 11011111

Boolean operators

» Special case:

tainted

xor al, al e AL

Range = [0..7]

- AND

T tainted

AL
A XOR A - 0O (constant)

Range = [0..7]

| ‘

Arithmetical instructions

add, sub, div, mul, idiv, imul, inc, dec

All arithmetical instructions can be expressed
using boolean operations.

ADD expressed using only AND and XOR
operators.

Generally if one of the operands of an
arithmetical operation is tainted, the result is
also tainted.

The affected flags in the EFLAGS register are
also tainted.

String instructions

Strings are just a linear array of characters.
X86 string instructions — scas, lods, cmps, ...

As a general rule any string instruction
applied to a tainted string results in a
tainted object.

String operations used to:

— calculate the string size - Tainted

— search for some specific char and set a flag if
found/not found - Tainted

Lifetime of a tainted object

* Creation:
— Assignment from an unstruted object
* mov eax, userbuffer[ecx]

— Assignment from a tainted object
* add eax, eax

* Deletion:
— Assignment from an untainted object
* mov eax, 030h

— Assignment from a tainted object which results in
a constant value.

* XOr eax, eax

ADVANCED TAINTING

Level of details

Some taint-based tools does not taint every
object which is affected by a tainted object.

For example, TaintBochs doesn"t taint
comparison flags (eflags zf, cf, of,...). Others
taint at a byte-level.

This sometimes provides easy ways to bypass
these tools.

This section deals with more “agressive’ taint
methods.

Optional taint objects

Bit-level tracking instead of a byte-level.

Conditional branch instructions tainting the
EIP register and all the flag affect in the
eflags register.

aint the code execution time.

aint at the code-block level of a control
flow graph (CFG).

Comparison instructions

* x86 instructions = cmp, test
« CMP EAX, 020h

pseudo-code:

temp = eax — 20h
set _eflags(temp)

» Lots of flags (Carry, Zero, Parity, Overflow,...)

Conditional branch instructions

100h: cmp eax, 020h
108h: jnz 0120h
Odh: inc eax -«

Target if zero

O 0O

0120h: xor ebx, ebx «——

Target if not zero

Conditional branch instructions

We already taint comparison flags like the
Zero Flag.

Branch instructions affects the EIP register.

If a jump is dependent of the flag value,
then the EIP must be tainted.

How to express in a intermediate language

the conditional jump to show relationship
between the EIP and the ZF?

Tainted EIP

Next instruction
after jnz

Jump if FALSE

cmp eax, ebx

jnz 10eh

mov eCX, edx EEEEEEEEEEEEEEEEEEEEE

DELTA

XChg ecx, eaX EENSEEEEENEEEEEEEEEEER

Jump if TRUE

Formula for conditional jumps

NIA — Next instruction address after the
conditional jump

TT —> True Target (address of the target
address if comparison is evaluated to TRUE)

FT - Jump If False Target (008Ch)
B - Flag value (always Boolean)
D = Delta = abs (JITT - JIFT)

We can now express EIP: EIP = NIA + BD

Tainted EIP

cmp eax, ebx

jnz 100h

mov eCX, edx EEEEEEEEEEEEEEEEEEEEE

xchg ecx, eax = YTEO{TIIIIIIIIIIIIT

DELTA = abs(100h - 88h) = 13h
NIA = 100
EIP > 8Ch + ZF * 13h

Tainted EIP

* What is the consequence of Tainted(EIP) =
TRUE?

* The target code blocks of the Control Flow
Graph are TAINTED!

* We can also use taint analysis to solve
reachability problems!
— Can | create a mp3 file which will make

Winamp to execute the code block #357 of
the function playSound()?

Full control

* A tainted EIP is not SUFFICIENT condition
to define a vulnerability. It is necessary that
the contents of the memory pointed by EIP
to also be tainted:

* |F IsVulnerable() = TRUE then
(IsTainted(EIP) = TRUE)

AND
(IsTainted(*EIP) = TRUE)

