Least-Privilege Isolation:
The OKWS Web Server

Brad Karp
UCL Computer Science

A

I

CS GZ03 / M030
12th December, 2008

Can We Prevent All Exploits?

e Many varieties of exploits
— Stack smashing, format strings, heap smashing,

If vulnerabilities and errors are here to stay, how A
can we limit the harm attackers can do when they
exploit a server?)

vulnerabilities, and adversaries creative

e Not just a problem with C; consider SQL

iInjection in a Python script:

g = “SELECT orders FROM accounts WHERE name = " +
name

db.execute (q)
e Programmers make errors

Problem: Sharing Services, But Isolating
Data

Servers often hold sensitive data

— e.g., amazon.com user’s credit card number

Single server shared by distinct users, who often
shouldn’t see one another’s data

— e.g., different amazon.com shoppers

Subsystems on single server must cooperate

— e.g., amazon.com web interface and back-end order
database

Goal: prevent users from obtaining/modifying

data other than their own

— I shouldn’t be able to retrieve your order (and credit
card number), even if I exploit amazon’s web server

Approach: Compartmentalization

e Give each subsystem minimal access to
system data and resources to do its job

— If subsystem exploited, at least minimize data
it can read or modify

o Define narrow interfaces between
subsystems, that allow only exact
operations required for application

e Design assuming exploit may occur,
especially in subsystems closest to users

Four principles

e Server processes should be chrooted

e Server processes should run as
unpriviledged users

e Server processes must have minimal
set of DB access privileges

o Separate independent functionality
into different processes

Idea: Principle of Least Privilege (PoLP)

e Each subsystem should only have access
to read/modify data needed for its job

e Cannot be enforced within subsystem—
must be enforced externally (i.e., by OS)
e Must decompose system into subsystems

— Must reason carefully about truly minimal set
of privileges needed by each subsystem

e Must be able to grant privileges in fine-
grained manner

— Else privileges granted to subsystem may be
too generovus...

Idea: Privilege Separation

e Determine which subsystems most
exposed to attack

e Reduce privileges of most exposed
subsystems

—e.g., amazon payment page can only insert
into order database, and order database
doesn’t have integrated web interface with
direct access to data

—e.g., ssh login daemon code that processes
network input shouldnt run as root

OKWS: A PoLP Web Server on UNIX

e Before OKWS:

— Apache web server process monolithic; all code runs
as same user

— Exploit Apache, and all data associated with web
service becomes accessible
e How might we separate a web server into
subsystems, to apply PoLP?

e Split into multiple processes, each with different,
minimal privileges, running as different user IDs

— Use UNIX isolation mechanisms to prevent
subsystems from reading/modifying each other’s data

UNIX Tools for PoLP: chroot()

e chroot() system call: set process’s notion of file
system root; thereafter, can’t change directories
above that point

e S0 can do:

chdir (“/usr/local/alone”);
chroot (“/usr/local/alone”) ;

setuid(61100) ; (unprivileged user ID)

 Now process has no access to any of filesystem
but what’s in tree rooted at /usr/local/alone

— No access to the many UNIX setuid-root programs, or
to sensitive data elsewhere on disk

— But must a priori set up all system files needed by
process in directory, e.g., shared libraries, &c. 9

UNIX Tools for PoLP:
File Descriptor Passing

o Initially, parent server process privileged

minimal privilege (e.g., can’t bind to privileged port
80), but grant it specific network connections or
specific files

 Powerful primitive: means can run subsystem with |

/

— Child can read these Tiles, even If It can't open them
(i.e., because of chroot())

e Can also pass file descriptors dynamically (after
fork()) with sendmsg()

— Process that faces network can accept connection,
pass socket for that connection to another process

10

OKWS System Design

[Okd p.rocess parses I:E:;r-l:—trg.;I}H'l_rP connections h:r;lt_learn::“i;i
user input, holds no port 11277
sensitive data

® SVC, process parses
user input for one
service; runs in
chroot()ed “jail”

e database proxy
process only accepts
authenticated requests ——
for subset of narrow [srepecitc e
RPC interface; can okws heiper | T
read sensitive data

ol -
&

Analyzing Privilege-Separated Designs

e What data does subsystem have access
to, with what permissions?

e How complex is the code in a subsystem
(e.g., parsing notoriously hard to get
right)?

e What input does a subsystem receive?

— Less structured - more worrying

—e.g., okld runs as root; should we worry about
exploits of it?

12

Strength of Isolation vs. Performance

() (3
§Q 8¢
& ©
& ¢
“Strict” Model OKWS Model

e One process per user gives strictest isolation, but means
many, many processes - low performance

e OKWS uses one process dper service for performance

reasons; so compromised service may reveal one user’s
data to another 13

OKWS Summary

e Shows that PoLP and privilege separation
hold real promise for limiting harm
exploits can do

e Programming model for services requires
new style of programming
— Can't use the file system; services chroot()ed

— Must define narrow, per-service interfaces to
database

— Must communicate explicitly using RPC
between service and database

14

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

