=V

SPECTRE

Meltdown and Spectre

Vinod Ganapathy
March 17, 2018

Goals of this talk

* Understand the technical details of Meltdown and Spectre.
* Explore what went wrong, and examine proposed defenses.

 Let's keep the talk interactive and informal! Feel free to ...

e ... correct/question me if you find anything incorrect/unclear.
e ... add interesting tidbits that you may have heard/read about the attacks.

Why are the attacks so dangerous?

* Allow an attacker to read the contents of arbitrary memory locations
on a victim computer:

» Stored passwords, cryptographic keys, credit card numbers, etc.

* The attacks do not exploit any known software vulnerabilities (at least
not in the traditional sense).

* Defence proposed only for Meltdown, not Spectre.

* Proposed Meltdown defence has drawn criticism; is not yet reliable.

Linus Torvalds declares Intel fix for Meltdown/Spectre
‘COMPLETE AND UTTER GARBAGFE’

Why are the attacks so spectacular?

* Both attacks exploit tricks proposed in the computer architecture
community decades ago!
* Meltdown exploits out-of-order execution.
» Spectre exploits speculative execution.

* Both tricks are completely standard and implemented by all modern
Processors.
* No flaw in the proposed design/specification of these architecture tricks.

* These tricks are now considered an essential part of the performance
delivered by the processor.

e Cannot simply turn them off as a defence!

Reactions:

Reactions:

Disbelief

BloombergTechnology W It Can't Be True.' Inside the Semiconductor Industry's Meltdown

‘ltCan’tBe True.’Inside the __
‘Semiconductor Industry’s Meltdown

By lanKing, Jeremy Kahn, Alex Webb, and Giles Turner
8 January 2018, 16:30 GMT+5:30 Updated on 9 January 2018, 08:03 GMT+5:30

- Technology titans work in secrecy for months to fix key flaws

-+ Researchers uncover security holes too big to believe

LN INTEL CHIP VULNERABILITIES

The Mounting Concerns Over Intel's Chip Vulnerabilities

Who are the real
hackers?
Get Your Free lol' Security Manifesto

Download Now »

Reactions:

Amazement

Adrlan Sam pson home research teaching contact

Department of Computer Science
Cornell University

Spectacular

JANUARY 16, 2018

Spectre has nerdsniped me, hard. I’ve been walking into lampposts and stuff. The more I think
about it, the less I understand it.

The first shocking thing is that, once you read about it, the problem is so easy to see. To
summarize: predictor state is untrusted, and mispredicted execution paths can leave traces in the
memory system, so malicious code can observe the behavior of “impossible” paths. It’s a
fundamental problem in an idea that’s been architectural gospel for decades. It’s one of those
obvious-in-retrospect epiphanies that makes me rethink everything.

The second thing is that it’s not just about speculation. We now live in a world with side channels
in microarchitectures that leave no real trace in the machine’s architectural state. There is already
work on leaks through prefetching, where someone learns about your activity by observing how it
affected a reverse-engineered prefetcher. You can imagine similar attacks on TLB state, store buffer
coalescing, coherence protocols, or even replacement policies. Suddenly, the SMT side channel
doesn’t look so bad.

Reactions:

Scientific postmortem
analyses

e

5

<[abric

Andrew Myers

Security, programming languages, and computer systems

Meltdown, Spectre, and why hardware can be
correct yet insecure

JANUARY 17, 2018 ~ ANDREW MYERS

The recent Meltdown and Spectre attacks have exposed, or at least emphasized, a
fundamental problem with the conventional approach to computer security at the
hardware level. Both of these attacks rely on side channels in conventional processor
designs. By exploiting these side channels, an untrusted program can learn the
contents of the operating system kernel’s memory or of another process’s memory,

bypassing the standard hardware protection mechanisms based on virtual memory.

The initial response from Intel was apparently that Meltdown and Spectre did not
reveal any bugs in their processor implementations — in other words, that their
processors were implemented correctly. What's perhaps more surprising is that
they have a pretty good case for making that claim. According to the commonly used
definitions of correctness, the processors of Intel, AMD, and other manufacturers —

all vulnerable to Spectre — are indeed correct with respect to the way they are used

Search ...

Recent Posts

Meltdown, Spectre, and why
hardware can be correct

yet insecure

A pet peeve about hash tables

Deserialization considered harmful:
the security case for

persistent objects

Javavs. OCaml vs. Scala

Lirnits of Heroism

Reactions:

From the pioneers of
speculative execution

AENT OF
Computer Sciences

{IVERSITY OF V NSIN-MADI¢ - . . -
1% HIRING About People Edu ch Connect

Despite current security concerns, speculative
execution has powered the computing revolution

Submitted by Jennifer Smith on Wed, 01/17/2018 - 9:32am

The recently discovered Spectre and Meltdown vulnerabilities, which affect microprocessors in
the majority of the world's computers, have dominated tech news in the last two weeks.
Though there is no current evidence that hackers have successfully exploited these
vulnerabilities, Spectre and Meltdown make it possible for bad actors to gain access to stored
information. Security researchers around the world have been working on fixes.

Yet there is more to the story: speculative execution, the hardware feature that has led to this
security vulnerability, also provides significant performance benefits and has been
instrumental in the continued increase in microprocessor performance for the past couple of
decades.

Because of their significant performance advantage, speculative execution techniques,
developed by researchers at the University of Wisconsin-Madison, have been in use in billions
of microprocessors worldwide for the past couple of decades.

These techniques, together with enabling approaches like branch prediction, allow a computer
chip to make "educated guesses” regarding the commands it will be doing in the near future,
so that it can get a head start in performing these commands. This leads to significantly
increased overlap, or parallelism, in performing the commands. Resulting performance gains
have made possible countless things that consumers and businesses now take for granted: fast
video streaming, online payment systems, cloud computing and much more.

Following up on pioneering work on branch prediction by Jim Smith in the early 1980s, and
other work by Smith and Andy Pleszkun in the mid-1980s, a model for a speculative execution
microprocessor was proposed in the mid- to late 1980s in work done by Guri Sohi. This was
years before the proliferation of the Internet, the early Internet worms, and the first Web
browser.

It is critical to note that it is not the concept of speculative execution that creates security
vulnerabilities, but rather how the approach is implemented by microprocessor designers.

“Different implementations of the speculative execution model carry
different risks,” says Sohi, chair of the Computer Sciences Department
(pictured at left). Sohi is also Vilas Research Professor, John P Morgridge
Professor and E. David Cronon Professor of Computer Sciences.

Because speculative execution makes guesses about what work a program
needs to do, it brings in information that may ultimately not be needed.

| “There's information kept around as a result of speculative execution that
would not normally be accessible under legitimate circurmnstances,” says
Sohi. The problem is that hackers, in very clever and indirect ways, using sophisticated

Outline

* Background

* Meltdown attack

e Spectre attack

* Open discussion: What went wrong? How can we fix it?

168 <
[}

3GB <

(Virtual) Address spaces

Kern

el space

Stack

J1

1T

Memory Mapping Region

fl:r

Heap

BSS segment

Data Segment

Text Segment (ELF)

* Every process has a virtual address space: 4GB
on 32-bit machines, ~281TB on 64-bit (only 48
bits currently used).

* Process code and data loaded/allocated into
the address space.

* Every process's address space is isolated from
every other process's address space

* BUT, kernel code and data loaded into every
process's address space (e.g., top 1GB in the
picture on the left, for 32-bit machines)

Isolating kernel memory from userland

168 <
[}

3GB <

Kernel space

Stack

J1

N

Memory Mapping Region

..-llr

Heap

BSS segment

Data Segment

Text Segment (ELF)

* Userland code must not directly access kernel
memory.

e Kernel contains sensitive info:
* Info about other processes.

* Typically, all of physical memory is mapped into
the kernel address space.

* If userland code attempts to directly access
kernel memory, hardware triggers an
exception.

Virtual and physical memory

Virtual address space Physical address space .

* The OS maps each process' virtual
orovanuao [address space to physical memory
e \ via per-process page tables.

5}

* Pages tables for all user processes
are managed by the kernel, i.e.,
kernel knows virtual to physical
mappings for all processes.

» Kernel itself is mapped into process
address space: Kernel's own virtual
oxaorr to physical mappings are part of the
______] page belonging to process page table.

0x10000000

OX 7FFFFFFF | \:| page not belonging to process

The memory hierarchy

—~ * On-chip caches provide fast access

Smaller

P, A5 raseer to data.

Approximate number of
machine cycles needed
to
access the contents of

a memaory location h

* Typically L1 and L2 private to
individual cores (on multi-core

vy machine)
/' asse 0 Ehysical Memery * L3 is common to all cores (also

/

I|'

\~1,000,000
bt

called LLC).

sewer o Caches store objects in cache-lines.
Size of cache-line varies: e.g., 64
bytes on Core-i7 for L3 caches.

Larger

Building block: Cache-based covert-channels

* Goal: Player A uses the faster access times of cache memory as a side-
channel to communicate with Player B

 Step 1: Flush the cache (so it’s empty)

Building block: Cache-based covert-channels

* Goal: Player A uses the faster access times of cache memory as a side-
channel to communicate with Player B

 Step 2: Setup a probe array in memory. Array is set up such that each
element of array occupies a different cache line

Create a
Probe Array
in memory

Building block: Cache-based covert-channels

* Goal: Player A uses the faster access times of cache memory as a side-
channel to communicate with Player B

 Step 3: Player B wants to communicate value X to Player A. He does so by
accesses Probe_Array[X]

To communicate X:
Access index X

Building block: Cache-based covert-channels

* Goal: Player A uses the faster access times of cache memory as a side-
channel to communicate with Player B

 Step 3: [Microarchitectural state change] That array element is loaded
into the appropriate cache line

Element loaded
\ into cache

Building block: Cache-based covert-channels

* Goal: Player A uses the faster access times of cache memory as a side-
channel to communicate with Player B

 Step 4: Player A reads Probe_Array sequentially and measures the access
time for each array element.

Read the probe

Building block: Cache-based covert-channels

2 500 | | | L
= 5400

w 2

§ 2 300 —
< 200 | |

Smaller read time when Probe_Array[X] is accessed

Side channels vs. Covert channels

* In a covert channel, the attacker controls both ends of the timing channel

e Can be used by attacker to transmit bits of information from one end to
the other.

* Meltdown uses such a covert channel to read kernel memory from
userland.

Building block: Out-of-order execution

* Allows instructions to execute speculatively, based on data
availability, rather than execute instructions in program order.

* Key to high performance: when program completes "in order”,
speculative state will have computation results ready, so cycles are
not wasted along the critical path.

° Exa m ple: in-order processors
lw $3, 100 ($4) in execution, cache miss
add $2, $3, 3$4 waits until the miss is satisfied
sub $5, $6, $7 waits for the add

out-of-order processors
lw $3, 100(s4) in execution, cache miss
sub $5, $6, $7 can execute during the cache miss
add $2, $3, $4 waits until the miss is satisfied

Building block: Out-of-order execution

* Above example was an instance of dynamic scheduling.
* Can also execute code with branches: requires branch prediction.
* An instance of speculative execution.

* Instructions execute speculatively out of order, but commit only
when speculative state is concretized via actual execution.
Instructions that have completed are said to have retired.

* Processors implement this using Tomasulo's algorithm.

Effects of OOO on the cache

| raise_exception();
// the line below is never reached
3 access(probe_array[data * 4096]);

(3]

Listing 1: A toy example to illustrate side-effects of out-
of-order execution.

<instr.>
<instr.> 2
E
g
EXCEPTION) &
HANDLER <linstr.>
<instr.> [¢ [Exception]
<instr.> <instr.> 8 e o
. : Eo &
[Terminate] <instr.> 9&5 2
o Q
<instr.> &

Effects of OOO on the cache

= Ln
o R]
o o

Access time
[cycles]

]
-
o

0 50 100 150 200 250
Page

Figure 4: Even if a memory location 1s only accessed
during out-of-order execution, it remains cached. Iterat-
ing over the 256 pages of probe_array shows one cache
hit, exactly on the page that was accessed during the out-

of-order execution.

Meltdown: The Covert Channel Setup

Exception Handling/
Suppression

Transient Accessed

K

] Secret @w=
Instructions

Microarchitectural

State Change

Transfer|(Covert Channel)
¥

Architectural Recovery | Recovered
State Secret @

y

Section 4.2

Figure 5: The Meltdown attack uses exception handling
or suppression, e.g., TSX, to run a series of transient
instructions. These transient instructions obtain a (per-
sistent) secret value and change the microarchitectural
state of the processor based on this secret value. This
forms the sending part of a microarchitectural covert
channel. The receiving side reads the microarchitectural
state, making it architectural and recovering the secret

Meltdown: The Covert Channel Setup

Fr— - - - - - - — 4+ -

Exception Handling/
Suppression

Transient

Accessed

Instructions

Microarchitectural

State Change

— e = o o o o o e e e e o e e o e o o o o o o e o e ol e e o e

Transfer|(Covert Channel)
y

Architectural

Recovery

Secret @

State

Section 4.2

Y

Recovered

Secret @

A value of interest, stored in kernel
memory (typically inaccessible to
user processes)

Forked child process
(dies on exception, but
affects cache state)

I
I
I
oo proces
I

Meltdown: Transient Instruction Sequence

Exception Handling/
Suppression

Transient

Accessed

Microarchitectural

State Change

|

|

|

|

|

|

|

|

| -
| Instructions
|

|

|

|

I

|

|

|

Transfer|(Covert Channel)
y

Recovery

Secret @

State

I

|

I)

| Architectural
|

|

|

|

Section 4.2

Y

Recovered

Secret @

=~ (=] Ln e i [i

; rex = kernel address

, rbx = probe array

retry:

mov al, byte [rcx]

shl rax, Oxc

jz retry

mov rbx, qword [rbx + rax]

1 ; rce = kernel address
2 ; rvbx = probe array
3 retry:

The Meltdown Attack (mov 2, byte [rex

6 jZz retry
7 mov rbx, qword [rbx + rax]

* Goal: Attacker wants to learn the value of the byte stored at a
particular kernel memory address (address in the rcx register).

e Step 1: Reading the secret (Line 4) mov al, byte [rcx]
* Loads the byte value stored at the address RCX into AL (LSB of RAX)

* This instruction should cause an exception if executed in userland.
Subsequent instructions should never be executed.

 BUT, due to OO0, subsequent instructions may already be executed
speculatively.

* Exceptions handled only when Line 4 is retired. By then, microarchitectural
state is already affected by subsequent OOO instruction execution.

1 ; rce = kernel address
2 ; rvbx = probe array
3 retry:

The Meltdown Attack (mov 2, byte [rex

6 jZz retry
7 mov rbx, qword [rbx + rax]

* Goal: Attacker wants to learn the value of the byte stored at a
particular kernel memory address (address in the rcx register).

e Step 2: Transmitting the secret (Line 5) shl rax, Oxc
* Multiply the byte value X by the page size (4K).
* This will be used to index into a probe array (base address in RBX).

* A large spatial distance ensures that neighboring locations of the probe array
are not loaded into the cache (due to spatial locality optimizations).

* Probe array is of size 256 * 4K bytes, since we only have 256 possible byte
values.

1 ; rce = kernel address
2 ; rvbx = probe array
3 retry:

The Meltdown Attack (mov 2, byte [rex

6 jZz retry
7 mov rbx, qword [rbx + rax]

* Goal: Attacker wants to learn the value of the byte stored at a
particular kernel memory address (address in the rcx register).

 Step 2: Transmitting the secret (Line 7) mov rbx, gword [rbx + rax]

* Read Probe_Array[X] (each entry is 4K bytes long).
* The value will be stored into the corresponding cache line

 Step 3: Receiving the secret (Parent process)
» Parent process probes the cache by iterating through Probe Array][].
* Only the read of Probe_Array[X] will be a hit in the cache.
e Attacker learns the value of X

1 ; rce = kernel address
2 ; rvbx = probe array
3 retry:

The Meltdown Attack (mov 2, byte [rex

6 jZz retry
7 mov rbx, qword [rbx + rax]

e What is the role of line 3 and line 67?

 Race conditions!

* The attacker is racing against the hardware: Must get transient
instructions to execute and affect microarchitectural state before

the exception for line 4 is thrown.

* In some machines, exception is not handled, and process crashes,
but processor zeroes out registers before crashing the process.

* If zeroing out happens faster than the operation in line 5, attacker
will read the wrong value for X. So the code retries.

* Instruction sequence called a 0-noise-bias.

Meltdown attack application: Memory dumps

e Can iterate attack across a range of memory addresses to obtain a
complete memory dump of the kernel.

* Physical memory on modern machines mapped at an offset within
the kernel. So complete dump of physical memory is possible.

0 max

Physical memory

User)) E E Kernel

0 24? _24? I I -1

Figure 2: The physical memory is directly mapped in the
kernel at a certain offset. A physical address (blue) which
is mapped accessible for the user space is also mapped in
the kernel space through the direct mapping.

Meltdown attack application: Memory dumps

 Attack against Firefox56 running atop a Ubunto 16.10/Linux-4.8.0
machine on Intel Corei7-6700K

194b7690: eb &5 e5 e5 eb eb
f94b76al: eb e eb e5 eb eb
£94b76b0: 7O 52 b8 6b 96 T7f
£94b76c0: 09 XX XX XX XX XX
£94b76d0: XX XX XX XX XX XX
£94b76e0: XX XX XX XX XX XX
f94b76f0: 12 XX e0 81 19 XX
f94b7700: 38 eb eb eb eb eb
£94b7710: 70 52 b8 6b 96 T7f
f94b7720: XX XX XX XX XX XX
£94b7730: XX XX XX XX 4a XX
f94b7740: XX XX XX XX XX XX
f94b7750: XX XX XX XX XX XX
£94b7760: 61 5f 30 32 30 33
f94b7770: 7O 52 18 7d 28 7f
f94b7780: XX XX XX XX XX XX
f94b7790: XX XX XX XX 54 XX
f94b77a0: XX XX XX XX XX XX
f94b77b0: XX XX XX XX XX XX
f94b77c0: 65 74 TO 77 64 30
f94b77d0: 30 bd 18 7d 28 T7f
f94b77e0: XX XX XX XX XX XX
f94b77L0: XX XX XX XX XX XX
194b7800: eb &5 e5 eb eb eb
£94b7810: 68 74 T4 70 73 3a
f94b7820: 64 6e 2e 6d 6f Ta
f94b7830: 73 65 72 2d 6d 65
£94b7840: 69 63 6f 6e 73 2f
£94b7850: 2d 36 34 2e 70 Be
£94b7860: 3d 31 34 35 32 32

4]
(4]

eb eb ebeb eb eb ebebeb |, I
e5 eb ebeS eb ebSeSebeb |, I
XX XX XX XX XX XX XX XX XX |pR.k............ |
XX XX X0 XX XX MM XX XX XX |......o.aiaa. I
XX XX XX XX XX XX XX XX XX |ovvnnnnnnnnnnnns |
XX XX XX XX XX XX XX XX 81 |........iian. | 3 Q
81 44 6f 6c 70 68 69 6e 31 |........ Dolphini|
e5 e5 o5 e5 e5 e5 e5 &5 &5 [B............... | Logins for the following sites are stored on your computer:
XX XX XX XX XX XX XX XX XX |pR.k............ |
AN XX XX XX XX XX XX XK XX |.....ooooaa., I Site - | Username Password Last Changed]
XX XX XX XX XX XX XX XX XX |....deeuiininnns |
XX XX X0 XX XX XN XX XX XX |............. | 5 https://accounts.go... meltdown@gmail.com secretpwd0
i}é z: i}é :: 2; 3: Sz :: Z: :a_ozosmﬂ: @ https://signin.ebay... meltdown@gmail.com Dolphinl8 28. Dez. 2017
XX XX XX XX XX XX XX XX
XX XX XX XX XX XX XX XX
XX XX XX XX XX XX XX XX
g ﬁ g ﬁ ﬁ g ;i g o secr| @ https://www.instag.. meltdown@gmail.com insta_0203 28, Dez. 2017
eb eb eb eb eb eb eb eb eb
XX XX XX XX XX XX XX XX XX
XX XX X0 XX XX MM XX XX XX |......o.aiaa. I
XX
eb

Saved Logins x

2 | a https://www.amaz... meltdown@gmail.com hunter2 28. Dez. 2017
(T S | Ei https:/iwww.faceb.. meltdown@facebook.. fb1234! 28. Dez. 2017

XX XX XK XX XX XX XX XK XK |ouunnnnnnnnnn... | Remove | Remove All Hide Passwords
eb eb eb eb eb eb eb eb
2f 61 64 64 6f 6e 73 2e 63 |https://addons.c/ Close
6c 6c 61 2e¢ 6e 65 74 2f 75 |dn.mozilla.net/ul
69 61 2f 61 64 64 6f 6e 5f |ser-media/addon_|
35 34 2f 33 35 34 33 39 39 |icons/354/354399
3f 6d 6f 64 69 66 69 65 64 |-64.png?modified| . . .
3038 3135 XX XK XX XX XX |-1452244815. .. .| Figure 6: Firefox 56 password manager showing the

stored passwords that are leaked using Meltdown in List-
ing 4.

RBRGE NS NN NG OEEEES

238

Listing 4: Memory dump of Firefox 56 on Ubuntu 16.10
on a Intel Core 17-6700K disclosing saved passwords (cf.

Meltdown attack status

* Applied successfully on several Intel processors on various OSes
(Linux-2.6.32 to 4.13.0), Windows 10, Docker, LXC, and OpenV<Z.

* Proposed defense: KPTI (Kernel Page Table Isolation).

* Being integrated into various OSes.
* Long-term effectiveness is unclear.
* Also, still seems controversial:

Linus Torvalds declares Intel fix for Meltdown/Spectre
‘COMPLETE AND UTTER GARBAGF’

Kernel page-table isolation

Kernel space Kernel space

Kernel space

User space User space

User space

User mode Kernel mode
Kernel mode

User mode

Summary of Meltdown

* Use OO0 to execute an instruction that would normally raise an
exception, and use it to read a secret from kernel memory.

* Transmit that secret to microarchitectural (cache) state.
e Read the cache state using a colluding process

* No “host” program required: self-contained with a parent+child
attacking process.

* Only Intel processors affected.
* A fix has been proposed and is being deployed

Spectre

e Affects a wide variety of processors (Intel, ARM, AMD).
* Uses another form of speculative execution: branch prediction.

* Slightly harder to deploy than Meltdown, in that a “host” program is
required, which contains certain instruction sequences that can be
misused.

* No fixes are known to date. @
»
w

SPECTRE

Building block: Branch prediction

* In OO0, what happens when the speculative execution engine
reaches a branch?

* Hardware branch predictor predicts a likely outcome of the branch
(based on past history), and continues to speculate along the (likely)
taken branch.

TRUE branch
st 1d 1d cmp j=z

Instruction stream \
FALSE branch

Building block: Branch prediction

* In OO0, what happens when the speculative execution engine
reaches a branch?

* Hardware branch predictor predicts a likely outcome of the branch
(based on past history), and continues to speculate along the (likely)
taken branch.

Concrete Speculation

execution — TRUE branch
st 1d 1d cmp j=z

Instruction stream \
FALSE branch

Building block: Branch prediction

* In OO0, what happens when the speculative execution engine
reaches a branch?

* Hardware branch predictor predicts a likely outcome of the branch
(based on past history), and continues to speculate along the (likely)
taken branch.

Concrete

' Speculation
execution

st 1d 1d cmp jz

Instruction stream \
FALSE branch

TRUE branch < Branch predictor predicts that
this is the likely branch that is taken

Basic setup of Spectre attack

* In a “host” program (the victim of the attack), find an instruction
sequence with a branch.

* Preparation: Execute the program to train the branch predictor to go
in one direction (say, TRUE)

e Attack: Feed it a malicious input that would cause the branch to go
the other direction (i.e., FALSE), but rely on branch predictor to
execute the TRUE branch. Use the speculatively executed TRUE
branch to extract data from the victim program.

Consider a host program with this snippet

if (x < arrayl_size)
y = array2[arrayl[x] * 256];

arrayl is aunsigned byte array of size arrayl size
array?2 is of size 64KB (256*256)

Suppose the value of x is derived from user input to the program (and
can therefore be controlled by attacker).

In this program, there is some secret data S that you wish to access

Consider a host program with this snippet

if (x < arrayl_size)
y = array2[arrayl[x] * 256];

| arrayl size

|
DIS
|

arrayl

Observe: arrayl [DIS] obtains S

Attack preparation

if (x < arrayl_size)
y = array2[arrayl[x] * 256];

1. Execute the program long enough with a number of values of x, so
that the branch predictor is trained to take the true branch.
Arrange for cache to not contain array2 and arrayl size.

Arrange for cache to contain secret value S. How? E.g., S could be a
cryptographic key you want to learn. Arrange for a cryptographic
computation to happen that uses S.

Actual Spectre attack

if (x < arrayl_size)
y = array2[arrayl[x] * 256];

Now execute the program with x = DIS

1. x<arrayl_size will lead to a cache miss. Leads to a delay in fetching
arrayl_size. Processor speculates on branch.

2. Speculative code reads array1[DIS]. A hit in the cache (the value S)
3. Code then proceeds to read array2[S*256]. A miss in the cache.

However, arrayl_size may have arrived by then. Processor realizes
mistake in speculation. But too late...the speculative read
array2[S*256] already affects cache state

Actual Spectre attack

if (x < arrayl_size)
y = array2[arrayl[x] * 256];

However, arrayl_size may have arrived by then. Processor realizes
mistake in speculation. But too late...the speculative read
array2[S*256] already affects cache state.

If array2 is accessible to the attacker, just probe all its elements and use
cache-timing to figure out the value of S. (Many options possible here
to “transmit” the microarchitectural state to the attacker).

Notes about Spectre

* Not restricted to host programs that have such a convenient code
sequence built in.

e Can search for “gadgets” (short instruction sequences) that can be “weaved”
together to achieve desired effect (“Return-oriented Programming”, for those
students who took my E0-256 course)

* Not restricted to conditional branches. Attack also adapted to work
with indirect branches.

Spectre attack application: Breaking out of
sandboxes

* JavaScript code that executes on your browser runs in a sandbox.

* Generally does not have access to browser state, except those explicitly
exported to it.

* For example, this ensures that the JavaScript code that you get from Google
when you read Gmail is unable to access your browsing history.

» Spectre can be used to create JavaScript code that “breaks” out of
this sandbox to access arbitrary browser memory.

e« Same basic idea as | described.

	Meltdown and Spectre�
	Goals of this talk
	Why are the attacks so dangerous?
	Why are the attacks so spectacular?
	Reactions:���
	Reactions:���Disbelief
	Reactions:��Amazement
	Reactions:��Scientific postmortem analyses
	Reactions:��From the pioneers of speculative execution
	Outline
	(Virtual) Address spaces
	Isolating kernel memory from userland
	Virtual and physical memory
	The memory hierarchy
	Building block: Cache-based covert-channels
	Building block: Cache-based covert-channels
	Building block: Cache-based covert-channels
	Building block: Cache-based covert-channels
	Building block: Cache-based covert-channels
	Building block: Cache-based covert-channels
	Side channels vs. Covert channels
	Building block: Out-of-order execution
	Building block: Out-of-order execution
	Effects of OOO on the cache
	Effects of OOO on the cache
	Meltdown: The Covert Channel Setup
	Meltdown: The Covert Channel Setup
	Meltdown: Transient Instruction Sequence
	The Meltdown Attack
	The Meltdown Attack
	The Meltdown Attack
	The Meltdown Attack
	Meltdown attack application: Memory dumps
	Meltdown attack application: Memory dumps
	Meltdown attack status
	Summary of Meltdown
	Spectre
	Building block: Branch prediction
	Building block: Branch prediction
	Building block: Branch prediction
	Basic setup of Spectre attack
	Consider a host program with this snippet
	Consider a host program with this snippet
	Attack preparation
	Actual Spectre attack
	Actual Spectre attack
	Notes about Spectre
	Spectre attack application: Breaking out of sandboxes

