
Meltdown and Spectre

Vinod Ganapathy
March 17, 2018



Goals of this talk

• Understand the technical details of Meltdown and Spectre.
• Explore what went wrong, and examine proposed defenses.

• Let's keep the talk interactive and informal! Feel free to ...
• … correct/question me if you find anything incorrect/unclear.
• … add interesting tidbits that you may have heard/read about the attacks.



Why are the attacks so dangerous?

• Allow an attacker to read the contents of arbitrary memory locations 
on a victim computer:

• Stored passwords, cryptographic keys, credit card numbers, etc.

• The attacks do not exploit any known software vulnerabilities (at least 
not in the traditional sense).

• Defence proposed only for Meltdown, not Spectre.
• Proposed Meltdown defence has drawn criticism; is not yet reliable.



Why are the attacks so spectacular?

• Both attacks exploit tricks proposed in the computer architecture 
community decades ago!

• Meltdown exploits out-of-order execution.
• Spectre exploits speculative execution.

• Both tricks are completely standard and implemented by all modern 
processors.

• No flaw in the proposed design/specification of these architecture tricks.
• These tricks are now considered an essential part of the performance 

delivered by the processor.
• Cannot simply turn them off as a defence!



Reactions:



Reactions:

Disbelief



Reactions:

Amazement



Reactions:

Scientific postmortem 
analyses



Reactions:

From the pioneers of 
speculative execution



Outline

• Background
• Meltdown attack
• Spectre attack
• Open discussion: What went wrong? How can we fix it?



(Virtual) Address spaces
• Every process has a virtual address space: 4GB 

on 32-bit machines, ~281TB on 64-bit (only 48 
bits currently used).

• Process code and data loaded/allocated into 
the address space.

• Every process's address space is isolated from 
every other process's address space

• BUT, kernel code and data loaded into every 
process's address space (e.g., top 1GB in the 
picture on the left, for 32-bit machines)



Isolating kernel memory from userland
• Userland code must not directly access kernel 

memory.
• Kernel contains sensitive info:

• Info about other processes.
• Typically, all of physical memory is mapped into 

the kernel address space.

• If userland code attempts to directly access 
kernel memory, hardware triggers an 
exception.



Virtual and physical memory
• The OS maps each process' virtual 

address space to physical memory 
via per-process page tables.

• Pages tables for all user processes 
are managed by the kernel, i.e., 
kernel knows virtual to physical 
mappings for all processes.

• Kernel itself is mapped into process 
address space: Kernel's own virtual 
to physical mappings are part of the 
page table.



The memory hierarchy

• On-chip caches provide fast access 
to data.

• Typically L1 and L2 private to 
individual cores (on multi-core 
machine)

• L3 is common to all cores (also 
called LLC).

• Caches store objects in cache-lines. 
Size of cache-line varies: e.g., 64 
bytes on Core-i7 for L3 caches.



Building block: Cache-based covert-channels
• Goal: Player A uses the faster access times of cache memory as a side-

channel to communicate with Player B
• Step 1: Flush the cache (so it’s empty)

clflush



Building block: Cache-based covert-channels
• Goal: Player A uses the faster access times of cache memory as a side-

channel to communicate with Player B
• Step 2: Setup a probe array in memory. Array is set up such that each 

element of array occupies a different cache line

Create a 
Probe Array
in memory



Building block: Cache-based covert-channels
• Goal: Player A uses the faster access times of cache memory as a side-

channel to communicate with Player B
• Step 3: Player B wants to communicate value X to Player A. He does so by 

accesses Probe_Array[X]

To communicate X: 
Access index X



Building block: Cache-based covert-channels
• Goal: Player A uses the faster access times of cache memory as a side-

channel to communicate with Player B
• Step 3: [Microarchitectural state change] That array element is loaded 

into the appropriate cache line

Element loaded 
into cache



Building block: Cache-based covert-channels
• Goal: Player A uses the faster access times of cache memory as a side-

channel to communicate with Player B
• Step 4: Player A reads Probe_Array sequentially and measures the access 

time for each array element. 

Read the probe
array sequentially 



Building block: Cache-based covert-channels

Smaller read time when Probe_Array[X] is accessed



Side channels vs. Covert channels
• In a covert channel, the attacker controls both ends of the timing channel
• Can be used by attacker to transmit bits of information from one end to 

the other.
• Meltdown uses such a covert channel to read kernel memory from 

userland.



Building block: Out-of-order execution
• Allows instructions to execute speculatively, based on data 

availability, rather than execute instructions in program order.
• Key to high performance: when program completes "in order", 

speculative state will have computation results ready, so cycles are 
not wasted along the critical path.

• Example:



Building block: Out-of-order execution

• Above example was an instance of dynamic scheduling. 
• Can also execute code with branches: requires branch prediction.
• An instance of speculative execution.
• Instructions execute speculatively out of order, but commit only 

when speculative state is concretized via actual execution. 
Instructions that have completed are said to have retired.

• Processors implement this using Tomasulo's algorithm.



Effects of OOO on the cache



Effects of OOO on the cache



Meltdown: The Covert Channel Setup



Meltdown: The Covert Channel Setup

Parent process

Forked child process
(dies on exception, but 

affects cache state)

A value of interest, stored in kernel 
memory (typically inaccessible to 

user processes)



Meltdown: Transient Instruction Sequence



The Meltdown Attack

• Goal: Attacker wants to learn the value of the byte stored at a 
particular kernel memory address (address in the rcx register).

• Step 1: Reading the secret (Line 4) mov al, byte [rcx]
• Loads the byte value stored at the address RCX into AL (LSB of RAX)
• This instruction should cause an exception if executed in userland. 

Subsequent instructions should never be executed.
• BUT, due to OOO, subsequent instructions may already be executed 

speculatively.
• Exceptions handled only when Line 4 is retired. By then, microarchitectural 

state is already affected by subsequent OOO instruction execution.



The Meltdown Attack

• Goal: Attacker wants to learn the value of the byte stored at a 
particular kernel memory address (address in the rcx register).

• Step 2: Transmitting the secret (Line 5) shl rax, 0xc
• Multiply the byte value X by the page size (4K).
• This will be used to index into a probe array (base address in RBX).
• A large spatial distance ensures that neighboring locations of the probe array 

are not loaded into the cache (due to spatial locality optimizations).
• Probe array is of size 256 * 4K bytes, since we only have 256 possible byte 

values.



The Meltdown Attack

• Goal: Attacker wants to learn the value of the byte stored at a 
particular kernel memory address (address in the rcx register).

• Step 2: Transmitting the secret (Line 7) mov rbx, qword [rbx + rax]
• Read Probe_Array[X] (each entry is 4K bytes long).
• The value will be stored into the corresponding cache line

• Step 3: Receiving the secret (Parent process)
• Parent process probes the cache by iterating through Probe_Array[]. 
• Only the read of Probe_Array[X] will be a hit in the cache.
• Attacker learns the value of X



The Meltdown Attack

• What is the role of line 3 and line 6?
• Race conditions!
• The attacker is racing against the hardware: Must get transient 

instructions to execute and affect microarchitectural state before 
the exception for line 4 is thrown.

• In some machines, exception is not handled, and process crashes, 
but processor zeroes out registers before crashing the process.

• If zeroing out happens faster than the operation in line 5, attacker 
will read the wrong value for X. So the code retries.

• Instruction sequence called a 0-noise-bias.



Meltdown attack application: Memory dumps
• Can iterate attack across a range of memory addresses to obtain a 

complete memory dump of the kernel.
• Physical memory on modern machines mapped at an offset within 

the kernel. So complete dump of physical memory is possible.



Meltdown attack application: Memory dumps
• Attack against Firefox56 running atop a Ubunto 16.10/Linux-4.8.0 

machine on Intel Corei7-6700K



Meltdown attack status
• Applied successfully on several Intel processors on various OSes 

(Linux-2.6.32 to 4.13.0), Windows 10, Docker, LXC, and OpenVZ.
• Proposed defense: KPTI (Kernel Page Table Isolation).

• Being integrated into various OSes.
• Long-term effectiveness is unclear.
• Also, still seems controversial:



Summary of Meltdown

• Use OOO to execute an instruction that would normally raise an 
exception, and use it to read a secret from kernel memory.

• Transmit that secret to microarchitectural (cache) state.
• Read the cache state using a colluding process

• No “host” program required: self-contained with a parent+child
attacking process.

• Only Intel processors affected.
• A fix has been proposed and is being deployed



Spectre

• Affects a wide variety of processors (Intel, ARM, AMD).
• Uses another form of speculative execution: branch prediction.
• Slightly harder to deploy than Meltdown, in that a “host” program is 

required, which contains certain instruction sequences that can be 
misused.

• No fixes are known to date.



Building block: Branch prediction

• In OOO, what happens when the speculative execution engine 
reaches a branch?

• Hardware branch predictor predicts a likely outcome of the branch 
(based on past history), and continues to speculate along the (likely) 
taken branch.

Instruction stream

st ld ld cmp jz
TRUE branch

FALSE branch



Building block: Branch prediction

• In OOO, what happens when the speculative execution engine 
reaches a branch?

• Hardware branch predictor predicts a likely outcome of the branch 
(based on past history), and continues to speculate along the (likely) 
taken branch.

Instruction stream

st ld ld cmp jz
TRUE branch

FALSE branch

Concrete
execution

Speculation



Building block: Branch prediction

• In OOO, what happens when the speculative execution engine 
reaches a branch?

• Hardware branch predictor predicts a likely outcome of the branch 
(based on past history), and continues to speculate along the (likely) 
taken branch.

Instruction stream

st ld ld cmp jz
TRUE branch

FALSE branch

Concrete
execution

Speculation
Branch predictor predicts that 
this is the likely branch that is taken



Basic setup of Spectre attack

• In a “host” program (the victim of the attack), find an instruction 
sequence with a branch.

• Preparation: Execute the program to train the branch predictor to go 
in one direction (say, TRUE)

• Attack: Feed it a malicious input that would cause the branch to go 
the other direction (i.e., FALSE), but rely on branch predictor to 
execute the TRUE branch. Use the speculatively executed TRUE 
branch to extract data from the victim program.



Consider a host program with this snippet

array1 is a unsigned byte array of size array1_size
array2 is of size 64KB (256*256)
Suppose the value of x is derived from user input to the program (and 
can therefore be controlled by attacker).
In this program, there is some secret data S that you wish to access



Consider a host program with this snippet

array1

array1_size

S

DIS

Observe: array1[DIS] obtains S



Attack preparation

1. Execute the program long enough with a number of values of x, so 
that the branch predictor is trained to take the true branch.

2. Arrange for cache to not contain array2 and array1_size.
3. Arrange for cache to contain secret value S. How? E.g., S could be a 

cryptographic key you want to learn. Arrange for a cryptographic 
computation to happen that uses S.



Actual Spectre attack

Now execute the program with x = DIS
1. x < array1_size will lead to a cache miss. Leads to a delay in fetching 

array1_size. Processor speculates on branch.
2. Speculative code reads array1[DIS]. A hit in the cache (the value S)
3. Code then proceeds to read array2[S*256]. A miss in the cache.
However, array1_size may have arrived by then. Processor realizes 
mistake in speculation. But too late…the speculative read 
array2[S*256] already affects cache state



Actual Spectre attack

However, array1_size may have arrived by then. Processor realizes 
mistake in speculation. But too late…the speculative read 
array2[S*256] already affects cache state.

If array2 is accessible to the attacker, just probe all its elements and use 
cache-timing to figure out the value of S. (Many options possible here 
to “transmit” the microarchitectural state to the attacker).



Notes about Spectre

• Not restricted to host programs that have such a convenient code 
sequence built in.

• Can search for “gadgets” (short instruction sequences) that can be “weaved” 
together to achieve desired effect (“Return-oriented Programming”, for those 
students who took my E0-256 course)

• Not restricted to conditional branches. Attack also adapted to work 
with indirect branches.



Spectre attack application: Breaking out of 
sandboxes
• JavaScript code that executes on your browser runs in a sandbox.

• Generally does not have access to browser state, except those explicitly 
exported to it.

• For example, this ensures that the JavaScript code that you get from Google 
when you read Gmail is unable to access your browsing history.

• Spectre can be used to create JavaScript code that “breaks” out of 
this sandbox to access arbitrary browser memory.

• Same basic idea as I described.


	Meltdown and Spectre�
	Goals of this talk
	Why are the attacks so dangerous?
	Why are the attacks so spectacular?
	Reactions:���
	Reactions:���Disbelief
	Reactions:��Amazement
	Reactions:��Scientific postmortem analyses
	Reactions:��From the pioneers of speculative execution 
	Outline
	(Virtual) Address spaces
	Isolating kernel memory from userland
	Virtual and physical memory
	The memory hierarchy
	Building block: Cache-based covert-channels
	Building block: Cache-based covert-channels
	Building block: Cache-based covert-channels
	Building block: Cache-based covert-channels
	Building block: Cache-based covert-channels
	Building block: Cache-based covert-channels
	Side channels vs. Covert channels
	Building block: Out-of-order execution
	Building block: Out-of-order execution
	Effects of OOO on the cache
	Effects of OOO on the cache
	Meltdown: The Covert Channel Setup
	Meltdown: The Covert Channel Setup
	Meltdown: Transient Instruction Sequence
	The Meltdown Attack
	The Meltdown Attack
	The Meltdown Attack
	The Meltdown Attack
	Meltdown attack application: Memory dumps
	Meltdown attack application: Memory dumps
	Meltdown attack status
	Summary of Meltdown
	Spectre
	Building block: Branch prediction
	Building block: Branch prediction
	Building block: Branch prediction
	Basic setup of Spectre attack
	Consider a host program with this snippet
	Consider a host program with this snippet
	Attack preparation
	Actual Spectre attack
	Actual Spectre attack
	Notes about Spectre
	Spectre attack application: Breaking out of sandboxes

