
Convolutional Neural Networks &
Recurrent Neural Networks

For
Cybersecurity

A.Shahina
Professor Dept. IT

SSN College of Engineering

2

CNN for Computer Vision

Organization of this talk:

• Introduction to deep learning & their applications in
cybersecurity

• Convolutional Neural Networks

• A case study with CNN for cybersecurity

• Recurrent Neural Neworks

• A case study with RNN for cybersecurity

Deep Learning and Cybersecurity

Intrusion Detection and Prevention Systems

Malware detection -Deep learning algorithms are capable of
detecting more advanced threats and are not reliant on
remembering known signatures and common attack patterns.

Spam and Social Engineering Detection

Network Traffic Analysis for malicious activities

User Behavior Analytics for recognizing insider threats and
employees using their legitimate access with malicious intent

Artificial Neural Networks: The Beginnings

W. S. McCulloch and W. Pitts (1943) Logical calculus of the ideas
immanent in nervous activity. Philosophy of Science 10(1), 18-24.

Warren McCulloch Walter Pitts

Revolutionary Idea: think of neural tissue as circuitry performing
mathematical computations!

Biological Inspiration

Idea : To make the computer more robust, intelligent, and learn, …
Let’s model our computer software (and/or hardware) after the brain

Inputs Outputs

Connection between cells

The McCulloch-Pitts Neuron

Linear weighted sum of inputs:

Learning rule:

Nonlinear, possibly stochastic transfer function:

Transfer
function g(x)

Only when sum exceeds the threshold limit will neuron fire

Weights can enhance or inhibit

Collective behaviour of neurons is what’s interesting for intelligent data
processing

z

z

W1

W2

W3

f(x)

1.4

-2.5

-0.06

g(z)

zg(z)

2.7

-8.6

0.002

f(x)

1.4

-2.5

-0.06

z = -0.06×2.7 + 2.5×8.6 + 1.4×0.002 = 21.34

g(z)

g(z) z

Perceptron Structure

Learning for Perceptron

1. Initialize wij with random values

2. Repeat until wij(t + 1) ≈ wij(t):
• Pick pattern p from training set
• Feed input to network and calculate the output
• Update the weights according to

 wij(t + 1) = wij(t) – Δwij

where Δwij = -η δE/δwij.

1. When no change (within some accuracy) occurs, the weights
are frozen and network is ready to use on data it has never
seen

11

Perceptrons : Limitation
• Recession

– 1969 Minsky-Papert: limitations of perceptron model
 Linear Separability in Perceptrons

Linearly Separable

+

+
+

+

+

++

+
++

+

+

-

_

NOT linearly Separable

+
+

+

+

_

+

+ OR

+

+

MLP Structure

A dataset
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Training the neural network
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Initialise with random weights

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Present a training pattern

1.4

2.7

1.9

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Feed it through to get output

1.4

2.7 0.8

1.9

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Compare with target output

1.4

2.7 0.8
 0
1.9 error 0.8

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Adjust weights based on error

1.4

2.7 0.8
 0
1.9 error 0.8

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Present a training pattern

6.4

2.8

1.7

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Feed it through to get output

6.4

2.8 0.9

1.7

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Compare with target output

6.4

2.8 0.9
 1
1.7 error -0.1

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

Adjust weights based on error

6.4

2.8 0.9
 1
1.7 error -0.1

Training data
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

And so on ….

6.4

2.8 0.9
 1
1.7 error -0.1

Repeat this thousands, maybe millions of times – each time
taking a random training instance, and making slight
weight adjustments
 Algorithms for weight adjustment are designed to make
changes that will reduce the error

The decision boundary
perspective…

Initial random weights

The decision boundary
perspective…

Present a training instance / adjust the weights

The decision boundary
perspective…

Present a training instance / adjust the weights

The decision boundary
perspective…

Present a training instance / adjust the weights

The decision boundary
perspective…

Present a training instance / adjust the weights

The decision boundary
perspective…

Eventually ….

Some ‘by the way’ points
NNs use nonlinear g(z) so they

can draw complex boundaries,

but keep the data unchanged

Some other ‘by the way’
points

NNs use nonlinear f(x) so they SVMs only draw
 straight lines,

can draw complex boundaries, but they transform
 the data first

but keep the data unchanged in a way that makes
 that OK

Feature
detectors

successive layers can learn higher-level
features …

 etc …detect lines in

Specific positions

 v

Higher level detetors
(horizontal line,
“RHS vertical lune”
“upper loop”, etc…

etc …

successive layers can learn higher-level
features …

 etc …detect lines in

Specific positions

 v

Higher level detetors
(horizontal line,
“RHS vertical lune”
“upper loop”, etc…

etc …

 What does this unit detect?

So: multiple layers make
sense

So: multiple layers
make sense

Your brain
works that
way

So: multiple layers make
sense

Many-layer neural network architectures should be
capable of learning the true underlying features and
‘feature logic’, and therefore generalise very well …

But, until very recently, our weight-
learning algorithms simply did not
work on multi-layer architectures

Along came deep learning …

Along came deep learning …

44

Convolutional Neural Networks

• Some Applications
– Image classification

– Object detection

– Neural style transfer

Conventional NN - # parameters

• Assume you have a 64x64x3 (RGB) image 12288 input features

• If 1000x1000x3 image 3 million (M) features

• If 1st hidden layer = 1000 neurons

• Weight matrix = 1000x3M = 3 billion parameters (very large)

• Difficult to get large data to avoid overfitting

46

Convolution – building block for CNN

• 6x6 image 3x3 filter = 4x4 output
vertical edge detector

• Helps to detect vertical edges in an image

3 0 1 2 7 4

1 5 8 9 3 1

2 7 2 5 1 3

0 1 3 1 7 8

4 2 1 6 2 8

2 4 5 2 3 9

*
1 0 -1

1 0 -1

1 0 -1
=

-5 -4 0 8

-10 -2 2 3

0 -2 -4 -7

-3 -2 -3 -16

47

Convolution – building block for CNN

• 6x6 image 3x3 filter = 4x4 output
vertical edge detector

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

*
1 0 -1

1 0 -1

1 0 -1
=

0 30 30 0

0 30 30 0

0 30 30 0

0 30 30 0

48

Convolution – building block for CNN

• 6x6 image 3x3 filter = 4x4 output
vertical edge detector

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

*
1 0 -1

1 0 -1

1 0 -1
=

0 30 30 0

0 30 30 0

0 30 30 0

0 30 30 0

49

Convolution – building block for CNN

• 6x6 image 3x3 filter = 4x4 output
vertical edge detector

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

*
1 0 -1

1 0 -1

1 0 -1
=

0 -30 -30 0

0 -30 -30 0

0 -30 -30 0

0 -30 -30 0

Light dark
pixels pixels

50

Convolution – building block for CNN

• 6x6 image 3x3 filter = 4x4 output
 horizontal edge detector

• Other filters too are used. E.g., Sobel filter etc.

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

*
1 1 1

0 0 0

-1 -1 -1
=

0 0 0 0

30 10 -10 -30

30 10 -10 -30

0 0 0 0

Instead of picking filter by hand, the actual parameters can be learned by ML.

51

Padding

• Zero padding, p=1. Take a 6x6 image and pad with 1 layer
of 0 on all 4 edges to get 8x8 image

• [3x3 filter] = [6x6 output]

• Valid * : p=0 nxn * fxf = (n-f+1) x (n-f+1)
• Valid * : p>0 nxn * fxf = (n+2p-f+1) x (n+2p-f+1)
• (so i/p and o/p size is same) = nxn

0 0 0 0 0 0 0 0

0 3 0 1 2 7 4 0

0 1 5 8 9 3 1 0

0 2 7 2 5 1 3 0

0 0 1 3 1 7 8 0

0 4 2 1 6 2 8 0

0 2 4 5 2 3 9 0

0 0 0 0 0 0 0 0

*

Padding
• image shrinks after convolution.

Input n*n image, convolve with f*f filter ⇒ output shape = (n-f+1)
* (n-f+1)
downside:

• image shrinks on every step (if 100 layer → shrinks to very small
images)

• pixels at corner are less used in the output

• ⇒ pad the image so that output shape is invariant.

• if p = padding amount (width of padded border)
→ output shape = (n+2p-f+1) * (n+2p-f+1)
Terminology: valid and same convolutions:

• valid convolution: no padding, output shape = (n-f+1) * (n-f+1)

• same convolution: output size equals input size. i.e. filter width p
= (f-1) / 2 (only works when f is odd — this is also a convention in
CV, partially because this way there'll be a central filter)

Strided Convolution

• Example stride = 2 in convolution:

• if input image n*n, filter size f*f, padding = f, stride = s
⇒ output shape = (floor((n+2p-f)/s) + 1) * (floor((n+2p-f)/s)
+ 1)

• nxn * fxf = (n+2p-f+1) x (n+2p-f+1)
2 2

(convention: stop moving if filter goes out of
image border.)

Note on cross-correlation v.s.
convolution

• The operation discribed before is called "cross-correlation".

•

• (Why doing the flipping in math: to ensure assosative law for convolution —
(AB)C=A(BC).)

Convolution Over Volume

• example: convolutions on RGB image

• image size = 6x6x3 = height * width * #channels

• filter size = 3x3x3, (convention: filter's #channels
matches the image)

• output size = 4x4(x1) — output is 2D for each
filter.

Multiple filters:

take >1 filters

stack outputs

together to form

an output volume.

Summary of
dimensions:
input shape =
nxnxn_c
filter shape = fxfxn_c

filters = n_c'
 ⇒ output shape =

(n-f+1) x (n-f+1)x*
n_c'

One Layer of a Convolutional Network

For each filter's output: add bias b,
then apply nonlinear activation function.

One layer of a CNN:

with analogy to normall NN:
linear operation (matrix mul V.S. convolution)
bias
nonlinear activation
difference: Number of parameters doesn't depend
on input dimension: even for very large images.
For 10 filters: # parameters = (3x3x3 +1bias)x10 =
280

general trend:
as going to
`deeper layers,
image size
shrinks,
#channels
increases.

Pooling Layers
• Pooling layers makes CNN more robust.

• Max pooling
divide input into regions, take max of each region.
Hyperparams:

• (common choice) filter size f=2 or 3, strid size s=2, padding p=0.

• note: no params to learn for max pooling layer, pooling layer not counted
in #layers (conv-pool as a single layer)

Intuition: a large number indicats a detected feature in that region → preseved after pooling.

Formula of dimension floor((n+2p-f+1)/s + 1) holds for POOL layer as well.

Output of max pooling: the same #channels as input (i.e. do maxpooling on each channel).
Average pooling
Less often used than max pooling.
Typical usecase: collapse 771000 activation into 111000.

Intuition: a large number indicats a detected feature in that region → preseved after pooling.

Formula of dimension floor((n+2p-f+1)/s + 1) holds for POOL layer as well.

Output of max pooling: the same #channels as input (i.e. do maxpooling on each channel).
Average pooling
Less often used than max pooling.
Typical usecase: collapse 771000 activation into 111000.

Intuition: a large number indicats a detected feature in that region → preseved after pooling.

Formula of dimension floor((n+2p-f+1)/s + 1) holds for POOL layer as well.

Output of max pooling: the same #channels as input (i.e. do maxpooling on each channel).
Average pooling
Less often used than max pooling.
Typical usecase: collapse 771000 activation into 111000.

Intuition: a large number
indicates a detected feature in
that region → preserved after
pooling.

Formula of dimension
floor((n+2p-f+1)/s + 1) holds for
POOL layer as well.
Output of max pooling: the same
#channels as input (i.e. do
maxpooling on each channel).
Average pooling
Less often used than max
pooling.
Typical usecase: collapse
771000 activation into 111000.

CNN Example
LeNet-5

CNN Example LeNet-5

Why Convolutions?

• Why Convolutions?

• 2 main advantages of CONV over FC: parameter sharing; sparcity
of connections.

• Parameter sharing:
A feature detector useful in one part of img is probably useful in
another part as well.
→ no need to learn separate feature detectors in different parts.

• Sparcity of connections:
For each output value depends only on a small number of inputs
(the pixels near that position)

• Invariance to translation...

Case Studies

• classic networks:
– LeNet-5
– AlexNet
– VGG

• ResNet (152-layer NN)
• Inception

LeNet-5 (1998)

• LeNet-5(1998)

Goal: recognize hand-written digits.
image → 2 CONV-MEANPOOL layers, all CONV are valid (without
padding) → 2 FC → softmax

60K is small. Now-a-days 10M to 100M parameters used

takeaway (patterns still used today):

• as go deeper, n_H, n_W goes down, n_C goes up

• conv-pool repeated some times, then FC-FC-output

• used sigmoid/tanh as activation, instead of ReLU. has non-linearity after pooling

AlexNet

• Same pattern: conv-maxpool layers → FC layers → softmax but much more
params.

• use ReLU as activation, multi-GPU training

• "local response normalization" (LRN): normalize across all channels (not
widely used today), a lot hyperparams to pick

VGG-16
• Much less hyperparams:

All CONV: 33,s=1,padding=same, MAXPOOL: 22,s=2
→ e.g. "(CONV 64) * 2" meaning 2 conv layers
(3*3,s=1,padding=same) of 64 channels.

pretty large even by
modern standard:
138M params
simplicity in
architecture: POOL
reduce n_H/n_W
by 2 each time;
CONV n_C=64-
>128->256->512
(increase by 2),
very systematic.

ResNets
• Very deep NN are hard to train → ResNet: skip connections, to be able to

train ~100 layers NN.

• Normal NN: from a[l] to a[l+2], two linear & ReLU operations. "main path".
ResNet: a[l] taks shortcut and goes directly to a[l+2]'s non-linearity.
"shortcut" / "skip connection".

ResNets

• Using residual block allows training very deep NN:
stack them to get ResNet (i.e. add shortcuts to "plain" NN).

• Problem of training plain NN: training error goes up (in practice) when having
deeper NN.
Because deeper NN are harder to train (vanishing/exploding gradients, etc.)

With ResNet: training
error goes down even
with deeper layers.

Why ResNets Work
– a[l+2] = g(z[l+2] + a[l]) = g(w[l+1] * a[l+1] + b[l+1] +

a[l])

– → note: when applying weight decay, w can be small (w~=0, b~=0)
⇒ a[l+2] ~= g(a[l]) = a[l] (assume g=ReLU)
⇒ it's easy to get a[l+2]=a[l], i.e. identity function from a[l] to a[l+2] is easily
learned
→ whereas in plain NN, it's difficult to learn an identity function between layers,
thus more layers make result worse
→ adding 2 layers doesn't hurt the network to learn a shallower NN's function, i.e.
performance is not hurt when increasing #layers.
→ when necessary can do even better than learning identity function

• z[l+2] and a[l] have the same dimension (so that they can be
added in g) → i.e. many "same" padding are used to preserve
dimension.

• If their dimensions are not matched (e.g. for pooling layers) → add
extra w_s to be applied on a[l].

Networks in Networks and 1x1
Convolutions

• Using 1*1 conv: for one single channel, just multiply the input
image(slice) by a constant...
But for >1 channels: each output number is inner prod of input
channel "slice" and conv filter.

Inception Network Motivation
• Instead of choosing filter size, do them all in parallel.

note: use SAME padding & stride=1 to have the same n_H, n_W

• Problem: computation cost.

Using Open-Source
Implementation

• Transfer Learning

Download weights of other's NN as pretrained params.
→ pretrained params are trained on huge datasets, and takes
weeks to train on multiple GPUs.
example: cat detector
3 class: tigger/misty/neither

• training set at hand is small

• → download both code and weights online

• e.g. ImageNet NN
→ change last layer's softmax
→ all Conv/Pool layers set frozen (not trainable)
→ only training softmax layer's weight with training set.

Data Augmentation

Tips for doing well on
benchmarks/winning competitions

• Ensembling:

• Train several(3~15) NN independently, then average their
outputs.

• Multi-crop at test time

• Predict on multiple versions of test images and average
results.
e.g. 10-crop at test time

– Image (crops: center, top-left, top-right, bottom-left, bottom-right) +
mirror-of-image (crops: center, top-left, top-right, bottom-left, bottom-
right)

Case Study 1 - CNN for malware
classification

-David Gibert’s work

 Ramnit. This type of malware is known to steal
your sensitive information such as user names
and passwords and it also can give access
to an illegitimate user to your computer.

 Kelihos_ver3. Kelihos botnet. Kelihos is
mainly involved in spamming and theft of
bitcoins. This trojan can give access and
control of your computer to an illegitimate
user and can also communicate with other
computers about sending spam emails,
run malicious programs and steal sensitive
information.

 A given malware binary file can be read as a vector of 8 bit unsigned integers
and organized into a 2D array. This array can be visualized as a gray scale
 image in the range [0,255].

CNN for malware classification

Case Study 1 - CNN for malware
classification

79

Recurrent Neural Networks
 Recurrent neural network (RNN) is a type of deep learning model that

is mostly used for analysis of sequential data (time series data
prediction).

There are different application areas of RNN:
 Speech recognition: Input: audio clip -> Output: text
 Music generation: Input: integer referring to genre (or an empty set)

-> Output: music
 Sentiment classification: Input: text -> Output: ratings
 DNA sequence analysis: Input: DNA (alphabet) -> Output: label part

of the DNA sequence
 Machine translation: Input: text -> Output: text translation
 Video activity recognition: Input: video frames -> Output:

identification of the activity
 Name entity recognition: Input: sentence -> Output: identify people

within it.

Why Recurrent Neural Networks
 Traditional feedforward neural networks do not share features across

different positions of the network.

In other words, these models assume that all inputs (and outputs) are
independent of each other.

Traditional neural networks require the input and output sequence
lengths to be constant across all predictions.

This FFNN model would not work in sequence prediction since the
previous inputs are inherently important in predicting the next
output.

For example, if you were predicting the next word in a stream of text,
you would want to know at least a couple of words before the target
word.

81

Recurrent Neural Networks

 G

82

RNN Architectures

 G

83

An RNN Cell

 G

84

RNN Forward Pass

 G

85

RNN Backward Pass

 G

86

Name entity recognition

 G

87

Name Entity Recognition

 To represent words in a sentence, we come up with a vocabulary
(dictionary) that lists all the words and assigns a sequential number
to each one.

 You can find online dictionaries already prepared for you, which
contain 100,000 words.

 If a word is not in the vocabulary, you can assign it to the <UNK>
(“unknown”) token.

Finally, we use a one-hot representation for each word as a vector of
zeros and a one corresponding to the position of the word in the
vocabulary list.

88

Name Entity Recognition

 To learn the mapping from X to Y, we might use a standard neural
network, where we feed the x<1>, x<2>, … x<t> to obtain y<1>,
y<2>, … y<t>.

This doesn’t work well. A couple of problems are present:

 The inputs and outputs for the different examples can be of different
lengths. Each input is a sentence, so it’s fair to imagine that most of
the training examples are sentences of different length.

 The network doesn’t share features learned from different positions
of the text. It doesn’t generalize well.

89

RNN best for applications dealing
with sequence model

 The RNN scans through the data from left to right and the parameters
used for each time step (Wax) are shared. The horizontal
connections are governed by Waa parameters, which are the same
for every time step. The Way’s are the parameters that govern the
output predictions.

90

RNN best for applications dealing
with sequence model

91

RNN best for applications dealing
with sequence model

For each layer of the network, we will calculate the loss, and then sum the losses up to obtain the
entire loss for the sequence.

After that, we can compute the backpropagation, which in this network is called “backpropagation
through time” as we run back through the sequence.

This is the “many-to-many” architecture where Tx = Ty.

92

Other RNN Architectures

 An application such as sentiment classification we end up in a
situation where Ty=1, so our RNN is of the “many-to-one” type, and
the architecture is:

93

Other RNN Architectures
 For an application as music generation, we have a “one-to-many”

architecture, as the input can be an integer related to a genre, while
the output is a piece of music:

94

Other RNN Architectures
In machine translation, when the input sequence length is different than

the output sequence (Tx ≠ Ty), the architecture of the RNN reflects
a “many-to-many” relationship.

RNN Language Modeling

Language models and sequence generation - Language models make
predictions by estimating the probability of the next word given the
words that precede it.

After you’ve trained a language model, the conditional distributions
(what a language model does is to estimate the probability of the
particular sequence of words that it will output.) you’ve estimated
may be used to sample novel sequences.

RNN Language Modeling

Steps to build the model:

- Take a training set: a large corpus of English (or whichever language
suits you) text.

- Tokenize the input sentences. (This is what we did before when we
assigned a token (a number) to each word from the vocabulary).
Remember, if a word does not exist within the dictionary we can
always replace it with the <UNK> token.

- Map each word to a one-hot vector of indices.

- Model when the sentence ends by adding an extra token called <EOS>.

- Build an RNN to model the chance of these different sequences.

RNN Language Modeling

RNN Language Modeling

Language models and sequence generation - Language models make
predictions by estimating the probability of the next word given the
words that precede it. After you’ve trained a language model, you’ll
get the probability of entire sequences

Language
Modeling

We see that a<1> makes a softmax prediction to try to figure out what is the
probability of the first word ŷ<1>. Then in the second step, a<2> makes a softmax
prediction given the correct first word (y<1>). All of the following steps make a
prediction based on the correct words that come before them.

After training, it can predict, given an initial set of words, what’ s the chance of the
next word. So, given a new sentence (y<1>, y<2>, y<3>) it can tell the probability
of this sentence:

Now that we have trained our RNN we can use it to generate novel sequences.

Language Modeling
A trained model can then generate any random sequence of words! Essentially, the

input of each step, instead of being the y from the previous step will be a random
sample from the previous step distribution.

So far we have built RNN on a word level, meaning the vocabulary is composed of
words. We can also build a character level RNN, where the vocabulary is
comprised of the individual character of the alphabet.

101

Vanishing gradients with RNNs
Throughout the previous examples, you might have noticed that the output ŷ was

mainly influenced by the values in the sequence close to it. On the other hand, there
are situations when some sentences have long dependencies, meaning some words
within the sentence are related to other ones much earlier in the sequence.

Think about a sentence where you have a subject, followed by many words, and then
finally we have the verb, which is depending on the earlier subject.

Basic RNNs are not good at capturing these long-term dependencies.

It’s like what we have seen in a deep neural network, where the network has a difficult
time propagating back to affect the weights of earlier layers.

Exploding gradients in an RNN are rare, but when they happen, they can be
catastrophic, as parameters get very large. So, in a way, it’s kind of easy to spot
when this is happening and fixing the situation.

The solution is to apply “gradient clipping”.
Therefore, take a look at the gradient vectors, and if it’s getting bigger than a set

threshold, you can rescale the gradients.
Let’s focus on the most difficult problem: vanishing gradients. When the network

“forgets” what happened earlier and does not propagate dependencies across the
whole sentence.

102

Gated Recurrent Unit

GRU

 G

Throughout the previous examples, you might have noticed that the output ŷ was mainly influenced by the values in the sequence close to it. On the other hand,
there are situations when some sentences have long dependencies, meaning some words within the sentence are related to other ones much earlier in the
sequence.

Think about a sentence where you have a subject, followed by many words, and then finally we have the verb, which is depending on the earlier subject.

Basic RNNs are not good at capturing these long-term dependencies.

It’s like what we have seen in a deep neural network, where the network has a difficult time propagating back to affect the weights of earlier layers.

Exploding gradients in an RNN are rare, but when they happen, they can be catastrophic, as parameters get very large. So, in a way, it’s kind of easy to spot when
this is happening and fixing the situation.

The solution is to apply “gradient clipping”.

Therefore, take a look at the gradient vectors, and if it’s getting bigger than a set threshold, you can rescale the gradients.

Let’s focus on the most difficult problem: vanishing gradients. When the network “forgets” what happened earlier and does not propagate dependencies across the
whole sentence.

103

 GRU
 The GRUn unit has a new variable called c,

which is a ”memory cell” that provides a bit
of memory to remember words even further
along the sentence.

At every step, this memory cell c is overwritten
by č, computed using the activation function
tanh of Wc.

The purpose of č is to replace c through the use of
a gate Γu, which takes a value between 0 and u, which takes a value between 0 and
1, and it basically decides whether or not we
update c with č.

When Γu, which takes a value between 0 and u = 0 then c<t> = c<t-1> . Therefore the
value of c<t> is maintained across many time
steps. This allows overcoming the problem of
vanishing gradients.

On the other hand, when Γu, which takes a value between 0 and u = 1 then č <t> =
c<t>.

104

Gated Recurrent Unit (GRU)

When Γu, which takes a value between 0 and u = 0 then c<t> = c<t-1> . Therefore the
value of c<t> is maintained across many time
steps. This allows overcoming the problem of
vanishing gradients.

On the other hand, when Γu, which takes a value between 0 and u = 1 then č <t> =
c<t>.

The equations that govern this unit are:

105

Long Short Term Memory (LSTM)
 LSTM is another, even more powerful, unit to learn very long-range

connections in a sequence. The unit consists of three gates: the
“forget”, “update” and “output” gate.

The forget gate plays the role of (1- Γu, which takes a value between 0 and u) that we saw in the GRU unit.

Additionally, this time, c<t> is different than a<t>.
These are the equations that govern the unit, followed by the visual

architecture:

106

LSTM

An LSTM unit is more powerful and flexible than a GRU unit, and it’s
the more proven choice. GRU units, instead, are more recent and
more straightforward, so it’s easier to build bigger models with
them.

107

Bidirectional LSTM (BLSTM)

 These networks take not only information from earlier in the sequence,
but also from later on. They are basically like a patient listener.
They “listen” to the whole sentence before making a prediction,
which is nice, generally speaking. Not a lot of humans can do that!

Case Study 2 – CNN for Classification
of Malware Disassembly Files

– David Gibert
The extracted features from the disassembled files are usually n-grams.

An n-gram is a contiguous sequence of n items from a sentence.

In this case, those items are opcodes extracted from the disassembled files.

Instead, represent opcodes as word embeddings that captures the
relationship among the words (here, opcodes).

Language models here learn vector representation of words, with the
hypothesis that words that occur in the same contexts tend to share semantic
meaning.

Skip-Gram model tries to predict each context word from its target word.

Case Study 2 – CNN for Classification
of Malware Disassembly Files

– David Gibert
● First, build a vocabulary of words from the malware training samples (665

opcodes)
● Represent each word (opcode like push) as a one-hot vector.
● The output layer depends on the window size, w (neighbourhood size)
● If w=1 (one word each on left & right of target word), then network

output is a 2D vector – probs. Of words on the left and probs of words
on the right

● Hidden layer dimension = VxE (vocabulary size x embeding size)
● Opcodes whose vector representations are most similar
● to the opcode "push" are:

1. pop
2. insertps
3. fucomp
which makes sense because tons of push instructions in malware files are
followed by the pop instruction or viceversa and are the two opcodes

most
used.

● Use CNN on the word embeddings to classify the malware

Case 3 - IoT Malware Hunting
Using RNN – HamidHaddad et al

Internet of Things (IoT) devices are increasingly deployed in different industries and
for different purposes (e.g. sensing/collecting of environmental data in both
civilian and military settings).

 They are a valuable attack target, such as malware designed to compromise
specific IoT devices.

In this work Recurrent Neural Network (RNN) was used in detecting IoT malware.
Specifically, theirvapproach uses RNN to analyze ARM-based IoT applications’
execution operation

codes (OpCodes).

IoT application dataset comprising 281 malware and 270 benign ware, evaluated
on 100 new IoT malware samples (i.e. not previously exposed to the model) with
three different Long Short Term Memory (LSTM) configurations.

Obtained an accuracy of 98.18%

Thank youThank you

Geometric Interpretation of
Perceptron Learning

Training

• Generalization: network’s performance
on a set of test patterns it has never
seen before (lower than on training set)

• Training set used to let ANN capture
features in data or mapping

• Initial large drop in error is due to
learning, but subsequent slow reduction
is due to:

1. Network memorization (too
many training cycles used)

2. Overfitting (too many hidden
nodes)

(network learns individual training
examples and loses
generalization ability)

Error (eg SSE)

No. of iterations

Optimum
network

Testing

Training

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113

