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CNN for Computer Vision

Organization of this talk:

• Introduction to deep learning & their applications in 
cybersecurity

• Convolutional Neural Networks

• A case study with CNN for cybersecurity

• Recurrent Neural Neworks

• A case study with RNN for cybersecurity



Deep Learning and Cybersecurity

Intrusion Detection and Prevention Systems

Malware detection -Deep learning algorithms are capable of 
detecting more advanced threats and are not reliant on 
remembering known signatures and common attack patterns. 

Spam and Social Engineering Detection

Network Traffic Analysis for malicious activities

User Behavior Analytics for recognizing insider threats and  
employees using their legitimate access with malicious intent



Artificial Neural Networks: The Beginnings

W. S. McCulloch and W. Pitts (1943) Logical calculus of the ideas 
immanent in nervous activity. Philosophy of Science 10(1), 18-24.

Warren McCulloch Walter Pitts

Revolutionary Idea: think of neural tissue as circuitry performing 
mathematical computations!



Biological Inspiration

Idea : To make the computer more robust, intelligent, and learn, …
Let’s model our computer software (and/or hardware) after the brain

Inputs Outputs

Connection between cells



The McCulloch-Pitts Neuron

Linear weighted sum of inputs:

Learning rule:

Nonlinear, possibly stochastic transfer function:

Transfer 
function g(x)

Only when sum exceeds the threshold limit will neuron fire

Weights can enhance or inhibit

Collective behaviour of neurons is what’s interesting for intelligent data 
processing
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Perceptron Structure 



Learning for Perceptron

1. Initialize wij with  random values

2. Repeat until wij(t + 1) ≈ wij(t):
• Pick pattern p from training set
• Feed input to network and calculate the output
• Update the weights according to

 wij(t + 1) = wij(t) – Δwij 

where Δwij = -η δE/δwij.

1. When no change (within some accuracy) occurs, the weights 
are frozen and network is ready to use on data it has never 
seen
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Perceptrons : Limitation
• Recession

– 1969 Minsky-Papert: limitations of perceptron model
      Linear Separability in Perceptrons 
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MLP Structure



A  dataset
Fields               class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …



Training the neural network 
Fields               class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …



Training data
Fields               class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …

Initialise with random weights



Training data
Fields               class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …

Present a training pattern

1.4 

2.7                                                    

1.9        



Training data
Fields               class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …

Feed it through to get output

1.4 

2.7                                                    0.8

1.9        



Training data
Fields               class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …

Compare with target output

1.4 

2.7                                                    0.8 
                                                  0
1.9                                           error 0.8



Training data
Fields               class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …

Adjust weights based on error

1.4 

2.7                                                    0.8 
                                                  0                                        
1.9                                           error 0.8



Training data
Fields               class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …

Present a training pattern

6.4 

2.8                                                    

1.7        



Training data
Fields               class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …

Feed it through to get output

6.4 

2.8                                                     0.9                                                   

1.7        



Training data
Fields               class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …

Compare with target output

6.4 

2.8                                                     0.9                                                   
                                                  1  
1.7                                          error  -0.1



Training data
Fields               class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …

Adjust weights based on error

6.4 

2.8                                                     0.9                                                   
                                                  1  
1.7                                          error  -0.1



Training data
Fields               class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …

And so on ….

6.4 

2.8                                                     0.9                                                   
                                                  1  
1.7                                          error  -0.1

Repeat this thousands, maybe millions of times – each time
taking a random training instance, and making slight 
weight adjustments
  Algorithms for weight adjustment are designed to make
changes that will reduce the error



The decision boundary 
perspective…

Initial random weights



The decision boundary 
perspective…

Present a training instance / adjust the weights



The decision boundary 
perspective…

Present a training instance / adjust the weights



The decision boundary 
perspective…

Present a training instance / adjust the weights



The decision boundary 
perspective…

Present a training instance / adjust the weights



The decision boundary 
perspective…

Eventually ….



Some ‘by the way’ points
NNs use nonlinear g(z) so they

can draw complex boundaries,

but keep the data unchanged



Some other ‘by the way’ 
points

NNs use nonlinear f(x) so they        SVMs only draw 
   straight lines,     

can draw complex boundaries,        but they transform 
   the data first

but keep the data unchanged         in a way that makes 
   that OK



Feature 
detectors



successive layers can learn higher-level 
features …
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successive layers can learn higher-level 
features …
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Higher level detetors
( horizontal line, 
“RHS vertical lune”
“upper loop”, etc…

etc …

 
  What does this unit detect?



So: multiple layers make 
sense 



So: multiple layers 
make sense 

Your brain 
works that 
way



So: multiple layers make 
sense 

Many-layer neural network architectures should be 
capable of learning the true underlying features and 
‘feature logic’, and  therefore generalise very well …



But, until very recently, our  weight-
learning algorithms simply did not 
work on multi-layer architectures



Along came deep learning …



Along came deep learning …
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Convolutional Neural Networks

• Some Applications
– Image classification

– Object detection

– Neural style transfer



Conventional NN - # parameters

• Assume you have a 64x64x3 (RGB) image  12288 input features

• If 1000x1000x3 image  3 million (M) features

• If 1st hidden layer = 1000 neurons  

• Weight matrix = 1000x3M = 3 billion parameters (very large)

• Difficult to get large data to avoid overfitting
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Convolution – building block for CNN

• 6x6 image 3x3 filter = 4x4 output
vertical edge detector

• Helps to detect vertical edges in an image

3 0 1 2 7 4

1 5 8 9 3 1

2 7 2 5 1 3

0 1 3 1 7 8

4 2 1 6 2 8

2 4 5 2 3 9

*
1 0 -1

1 0 -1

1 0 -1
=

-5 -4 0 8

-10 -2 2 3

0 -2 -4 -7

-3 -2 -3 -16
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Convolution – building block for CNN

• 6x6 image 3x3 filter = 4x4 output
vertical edge detector

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

*
1 0 -1

1 0 -1

1 0 -1
=

0 30 30 0

0 30 30 0

0 30 30 0

0 30 30 0



48

Convolution – building block for CNN

• 6x6 image 3x3 filter = 4x4 output
vertical edge detector

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

*
1 0 -1

1 0 -1

1 0 -1
=

0 30 30 0

0 30 30 0

0 30 30 0

0 30 30 0
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Convolution – building block for CNN

• 6x6 image 3x3 filter = 4x4 output
vertical edge detector

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

*
1 0 -1

1 0 -1

1 0 -1
=

0 -30 -30 0

0 -30 -30 0

0 -30 -30 0

0 -30 -30 0

Light       dark 
pixels     pixels
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Convolution – building block for CNN

• 6x6 image 3x3 filter = 4x4 output    
          horizontal edge detector

• Other filters too are used. E.g., Sobel filter etc.

10 10 10 0 0 0

10 10 10 0 0 0

10 10 10 0 0 0

0 0 0 10 10 10

0 0 0 10 10 10

0 0 0 10 10 10

*
1 1 1

0 0 0

-1 -1 -1
=

0 0 0 0

30 10 -10 -30

30 10 -10 -30

0 0 0 0

Instead of picking filter by hand, the actual parameters can be learned by ML.
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Padding

• Zero padding, p=1. Take a 6x6 image and pad with 1 layer 
of 0 on all 4 edges to get 8x8 image

•                                              [3x3 filter] = [6x6 output]

• Valid * : p=0  nxn * fxf = (n-f+1) x (n-f+1)
• Valid * : p>0  nxn * fxf = (n+2p-f+1) x (n+2p-f+1)
•          (so i/p and o/p size is same)     = nxn

0 0 0 0 0 0 0 0

0 3 0 1 2 7 4 0

0 1 5 8 9 3 1 0

0 2 7 2 5 1 3 0

0 0 1 3 1 7 8 0

0 4 2 1 6 2 8 0

0 2 4 5 2 3 9 0

0 0 0 0 0 0 0 0

*



Padding
• image shrinks after convolution.

Input n*n image, convolve with f*f filter ⇒ output shape = (n-f+1) 
* (n-f+1)
downside: 

• image shrinks on every step (if 100 layer → shrinks to very small 
images) 

• pixels at corner are less used in the output 

• ⇒ pad the image so that output shape is invariant. 

• if p = padding amount (width of padded border)
→ output shape = (n+2p-f+1) * (n+2p-f+1) 
Terminology: valid and same convolutions: 

• valid convolution: no padding, output shape = (n-f+1) * (n-f+1) 

• same convolution: output size equals input size. i.e. filter width p 
= (f-1) / 2 (only works when f is odd — this is also a convention in 
CV, partially because this way there'll be a central filter) 



Strided Convolution

• Example stride = 2 in convolution:

• if input image n*n, filter size f*f, padding = f, stride = s
⇒ output shape = (floor((n+2p-f)/s) + 1) * (floor((n+2p-f)/s) 
+ 1) 

• nxn * fxf = (n+2p-f+1) x (n+2p-f+1)
2 2

(convention: stop moving if filter goes out of 
image border.) 



Note on cross-correlation v.s. 
convolution

• The operation discribed before is called "cross-correlation".

•  

• (Why doing the flipping in math: to ensure assosative law for convolution — 
(AB)C=A(BC).) 



Convolution Over Volume

• example: convolutions on RGB image

 

• image size = 6x6x3 = height * width * #channels

• filter size = 3x3x3, (convention: filter's #channels 
matches the image)

• output size = 4x4(x1) — output is 2D for each 
filter. 



Multiple filters: 

take >1 filters 

stack outputs 

together to form 

an output volume. 

Summary of 
dimensions:
input shape = 
nxnxn_c
filter shape = fxfxn_c 

filters = n_c'
 ⇒ output shape =    

(n-f+1) x (n-f+1)x* 
n_c' 



One Layer of a Convolutional Network

For each filter's output: add bias b,  
then apply nonlinear activation function. 

One layer of a CNN:

with analogy to normall NN: 
linear operation (matrix mul V.S. convolution) 
bias 
nonlinear activation 
difference: Number of parameters doesn't depend 
on input dimension: even for very large images. 
For 10 filters: # parameters = (3x3x3 +1bias)x10 = 
280



general trend: 
as going to 
`deeper layers, 
image size 
shrinks, 
#channels 
increases.



Pooling Layers
• Pooling layers makes CNN more robust. 

• Max pooling
divide input into regions, take max of each region. 
Hyperparams: 

• (common choice) filter size f=2 or 3, strid size s=2, padding p=0. 

• note: no params to learn for max pooling layer, pooling layer not counted 
in #layers (conv-pool as a single layer) 

Intuition: a large number indicats a detected feature in that region → preseved after pooling. 

Formula of dimension floor((n+2p-f+1)/s + 1) holds for POOL layer as well. 

Output of max pooling: the same #channels as input (i.e. do maxpooling on each channel). 
Average pooling
Less often used than max pooling.
Typical usecase: collapse 771000 activation into 111000. 

Intuition: a large number indicats a detected feature in that region → preseved after pooling. 

Formula of dimension floor((n+2p-f+1)/s + 1) holds for POOL layer as well. 

Output of max pooling: the same #channels as input (i.e. do maxpooling on each channel). 
Average pooling
Less often used than max pooling.
Typical usecase: collapse 771000 activation into 111000. 

Intuition: a large number indicats a detected feature in that region → preseved after pooling. 

Formula of dimension floor((n+2p-f+1)/s + 1) holds for POOL layer as well. 

Output of max pooling: the same #channels as input (i.e. do maxpooling on each channel). 
Average pooling
Less often used than max pooling.
Typical usecase: collapse 771000 activation into 111000. 

Intuition: a large number 
indicates a detected feature in 
that region → preserved after 
pooling. 

Formula of dimension 
floor((n+2p-f+1)/s + 1) holds for 
POOL layer as well. 
Output of max pooling: the same 
#channels as input (i.e. do 
maxpooling on each channel). 
Average pooling
Less often used than max 
pooling.
Typical usecase: collapse 
771000 activation into 111000. 



CNN Example
LeNet-5



CNN Example   LeNet-5



Why Convolutions?

• Why Convolutions?

• 2 main advantages of CONV over FC: parameter sharing; sparcity 
of connections. 

• Parameter sharing:
A feature detector useful in one part of img is probably useful in 
another part as well.
→ no need to learn separate feature detectors in different parts. 

• Sparcity of connections:
For each output value depends only on a small number of inputs 
(the pixels near that position) 

• Invariance to translation... 



Case Studies

• classic networks: 
– LeNet-5 
– AlexNet 
– VGG 

• ResNet (152-layer NN)
• Inception 



LeNet-5 (1998)

• LeNet-5(1998)

Goal: recognize hand-written digits.
image → 2 CONV-MEANPOOL layers, all CONV are valid (without 
padding) → 2 FC → softmax

60K is small. Now-a-days 10M to 100M parameters used

takeaway (patterns still used today):

• as go deeper, n_H, n_W goes down, n_C goes up 

• conv-pool repeated some times, then FC-FC-output 

• used sigmoid/tanh as activation, instead of ReLU. has non-linearity after pooling 



AlexNet

•  Same pattern: conv-maxpool layers → FC layers → softmax but much more 
params.

• use ReLU as activation, multi-GPU training 

• "local response normalization" (LRN): normalize across all channels (not 
widely used today), a lot hyperparams to pick 



VGG-16
• Much less hyperparams:

All CONV: 33,s=1,padding=same, MAXPOOL: 22,s=2
→ e.g. "(CONV 64) * 2" meaning 2 conv layers 
(3*3,s=1,padding=same) of 64 channels.

pretty large even by 
modern standard: 
138M params 
simplicity in 
architecture: POOL 
reduce n_H/n_W 
by 2 each time; 
CONV n_C=64-
>128->256->512 
(increase by 2), 
very systematic. 



ResNets
• Very deep NN are hard to train → ResNet: skip connections, to be able to 

train ~100 layers NN.

• Normal NN: from a[l] to a[l+2], two linear & ReLU operations. "main path".
ResNet: a[l] taks shortcut and goes directly to a[l+2]'s non-linearity. 
"shortcut" / "skip connection".



ResNets

• Using residual block allows training very deep NN:
stack them to get ResNet (i.e. add shortcuts to "plain" NN).

• Problem of training plain NN: training error goes up (in practice) when having 
deeper NN.
Because deeper NN are harder to train (vanishing/exploding gradients, etc.)

With ResNet: training 
error goes down even 
with deeper layers.



Why ResNets Work
– a[l+2] = g(z[l+2] + a[l]) = g(w[l+1] * a[l+1] + b[l+1] + 

a[l])

– → note: when applying weight decay, w can be small (w~=0, b~=0)
⇒ a[l+2] ~= g(a[l]) = a[l] (assume g=ReLU)
⇒ it's easy to get a[l+2]=a[l], i.e. identity function from a[l] to a[l+2] is easily 
learned
→ whereas in plain NN, it's difficult to learn an identity function between layers, 
thus more layers make result worse
→ adding 2 layers doesn't hurt the network to learn a shallower NN's function, i.e. 
performance is not hurt when increasing #layers.
→ when necessary can do even better than learning identity function



• z[l+2] and a[l] have the same dimension (so that they can be 
added in g) → i.e. many "same" padding are used to preserve 
dimension. 

• If their dimensions are not matched (e.g. for pooling layers) → add 
extra w_s to be applied on a[l]. 



Networks in Networks and 1x1 
Convolutions

• Using 1*1 conv: for one single channel, just multiply the input 
image(slice) by a constant...
But for >1 channels: each output number is inner prod of input 
channel "slice" and conv filter.



Inception Network Motivation
• Instead of choosing filter size, do them all in parallel.

note: use SAME padding & stride=1 to have the same n_H, n_W

• Problem: computation cost.



Using Open-Source 
Implementation

• Transfer Learning

Download weights of other's NN as pretrained params.
→ pretrained params are trained on huge datasets, and takes 
weeks to train on multiple GPUs.
example: cat detector 
3 class: tigger/misty/neither 

• training set at hand is small 

• → download both code and weights online 

• e.g. ImageNet NN
→ change last layer's softmax
→ all Conv/Pool layers set frozen (not trainable)
→ only training softmax layer's weight with training set.



Data Augmentation



Tips for doing well on 
benchmarks/winning competitions 

• Ensembling: 

• Train several(3~15) NN independently, then average their 
outputs. 

• Multi-crop at test time 

• Predict on multiple versions of test images and average 
results.
e.g. 10-crop at test time

– Image (crops: center, top-left, top-right, bottom-left, bottom-right) + 
mirror-of-image (crops: center, top-left, top-right, bottom-left, bottom-
right)



Case Study 1 - CNN for malware 
classification

-David Gibert’s work

 Ramnit. This type of malware is known to steal 
your sensitive information such as user names 
and passwords and it also can give access
to an illegitimate user to your computer.

 Kelihos_ver3. Kelihos botnet. Kelihos is 
mainly involved in spamming and theft of 
bitcoins. This trojan can give access and 
control of your computer to an illegitimate 
user and can also communicate with other 
computers about sending spam emails, 
run malicious programs and steal sensitive 
information.

 A given malware binary file can be read as a vector of 8 bit unsigned integers 
and organized into a 2D array. This array can be  visualized as a gray scale
 image in the range [0,255].



CNN for malware classification



Case Study 1 - CNN for malware 
classification
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Recurrent Neural Networks
 Recurrent neural network (RNN) is a type of deep learning model that 

is mostly used for analysis of sequential data (time series data 
prediction).

There are different application areas of RNN: 
    Speech recognition: Input: audio clip -> Output: text
    Music generation: Input: integer referring to genre (or an empty set) 

-> Output: music
    Sentiment classification: Input: text -> Output: ratings
    DNA sequence analysis: Input: DNA (alphabet) -> Output: label part 

of the DNA sequence
    Machine translation: Input: text -> Output: text translation
    Video activity recognition: Input: video frames -> Output: 

identification of the activity
    Name entity recognition: Input: sentence -> Output: identify people 

within it.



Why Recurrent Neural Networks
 Traditional feedforward neural networks do not share features across 

different positions of the network. 

In other words, these models assume that all inputs (and outputs) are 
independent of each other. 

Traditional neural networks require the input and output sequence 
lengths to be constant across all predictions. 

This FFNN model would not work in sequence prediction since the 
previous inputs are inherently important in predicting the next 
output. 

For example, if you were predicting the next word in a stream of text, 
you would want to know at least a couple of words before the target 
word.



81

Recurrent Neural Networks

 G
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RNN Architectures

 G
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An RNN Cell

 G
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RNN Forward Pass

 G
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RNN Backward Pass

 G
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Name entity recognition

 G
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Name Entity Recognition

 To represent words in a sentence, we come up with a vocabulary 
(dictionary) that lists all the words and assigns a sequential number 
to each one.

 You can find online dictionaries already prepared for you, which 
contain 100,000 words.

 If a word is not in the vocabulary, you can assign it to the <UNK> 
(“unknown”) token. 

Finally, we use a one-hot representation for each word as a vector of 
zeros and a one corresponding to the position of the word in the 
vocabulary list.
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Name Entity Recognition

 To learn the mapping from X to Y, we might use a standard neural 
network, where we feed the x<1>, x<2>, … x<t> to obtain y<1>, 
y<2>, … y<t>.

This doesn’t work well. A couple of problems are present:

    The inputs and outputs for the different examples can be of different 
lengths. Each input is a sentence, so it’s fair to imagine that most of 
the training examples are sentences of different length.

    The network doesn’t share features learned from different positions 
of the text. It doesn’t generalize well.



89

RNN best for applications dealing 
with sequence model

 The RNN scans through the data from left to right and the parameters 
used for each time step (Wax) are shared. The horizontal 
connections are governed by Waa parameters, which are the same 
for every time step. The Way’s are the parameters that govern the 
output predictions. 
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RNN best for applications dealing 
with sequence model



91

RNN best for applications dealing 
with sequence model

For each layer of the network, we will calculate the loss, and then sum the losses up to obtain the 
entire loss for the sequence.

After that, we can compute the backpropagation, which in this network is called “backpropagation 
through time” as we run back through the sequence. 

This is the “many-to-many” architecture where Tx = Ty.
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Other RNN Architectures

 An application such as sentiment classification we end up in a 
situation where Ty=1, so our RNN is of the “many-to-one” type, and 
the architecture is: 
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Other RNN Architectures
 For an application as music generation, we have a “one-to-many” 

architecture, as the input can be an integer related to a genre, while 
the output is a piece of music: 
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Other RNN Architectures
In machine translation, when the input sequence length is different than 

the output sequence (Tx ≠ Ty), the architecture of the RNN reflects 
a “many-to-many” relationship. 



RNN Language Modeling

Language models and sequence generation - Language models make 
predictions by estimating the probability of the next word given the 
words that precede it. 

After you’ve trained a language model, the conditional distributions 
(what a language model does is to estimate the probability of the 
particular sequence of words that it will output.) you’ve estimated 
may be used to sample novel sequences.



RNN Language Modeling

Steps to build the model:

- Take a training set: a large corpus of English (or whichever language 
suits you) text.

- Tokenize the input sentences. (This is what we did before when we 
assigned a token (a number) to each word from the vocabulary). 
Remember, if a word does not exist within the dictionary we can 
always replace it with the <UNK> token.

- Map each word to a one-hot vector of indices.

- Model when the sentence ends by adding an extra token called <EOS>.

- Build an RNN to model the chance of these different sequences.



RNN Language Modeling



RNN Language Modeling

Language models and sequence generation - Language models make 
predictions by estimating the probability of the next word given the 
words that precede it. After you’ve trained a language model, you’ll 
get the probability of entire sequences



Language 
Modeling

We see that a<1> makes a softmax prediction to try to figure out what is the 
probability of the first word ŷ<1>. Then in the second step, a<2> makes a softmax 
prediction given the correct first word (y<1>). All of the following steps make a 
prediction based on the correct words that come before them.

After training, it can predict, given an initial set of words, what’ s the chance of the 
next word. So, given a new sentence (y<1>, y<2>, y<3>) it can tell the probability 
of this sentence:

Now that we have trained our RNN we can use it to generate novel sequences.



Language Modeling
A trained model can then generate any random sequence of words!  Essentially, the 

input of each step, instead of being the y from the previous step will be a random 
sample from the previous step distribution.

So far we have built RNN on a word level, meaning the vocabulary is composed of 
words. We can also build a character level RNN, where the vocabulary is 
comprised of the individual character of the alphabet. 
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Vanishing gradients with RNNs
Throughout the previous examples, you might have noticed that the output ŷ was 

mainly influenced by the values in the sequence close to it. On the other hand, there 
are situations when some sentences have long dependencies, meaning some words 
within the sentence are related to other ones much earlier in the sequence.

Think about a sentence where you have a subject, followed by many words, and then 
finally we have the verb, which is depending on the earlier subject.

Basic RNNs are not good at capturing these long-term dependencies.

It’s like what we have seen in a deep neural network, where the network has a difficult 
time propagating back to affect the weights of earlier layers.

Exploding gradients in an RNN are rare, but when they happen, they can be 
catastrophic, as parameters get very large. So, in a way, it’s kind of easy to spot 
when this is happening and fixing the situation.

The solution is to apply “gradient clipping”. 
Therefore, take a look at the gradient vectors, and if it’s getting bigger than a set 

threshold, you can rescale the gradients. 
Let’s focus on the most difficult problem: vanishing gradients. When the network 

“forgets” what happened earlier and does not propagate dependencies across the 
whole sentence.
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Gated Recurrent Unit

GRU 

 G

Throughout the previous examples, you might have noticed that the output ŷ was mainly influenced by the values in the sequence close to it. On the other hand, 
there are situations when some sentences have long dependencies, meaning some words within the sentence are related to other ones much earlier in the 
sequence.

Think about a sentence where you have a subject, followed by many words, and then finally we have the verb, which is depending on the earlier subject.

Basic RNNs are not good at capturing these long-term dependencies.

It’s like what we have seen in a deep neural network, where the network has a difficult time propagating back to affect the weights of earlier layers.

Exploding gradients in an RNN are rare, but when they happen, they can be catastrophic, as parameters get very large. So, in a way, it’s kind of easy to spot when 
this is happening and fixing the situation.

The solution is to apply “gradient clipping”.

Therefore, take a look at the gradient vectors, and if it’s getting bigger than a set threshold, you can rescale the gradients.

Let’s focus on the most difficult problem: vanishing gradients. When the network “forgets” what happened earlier and does not propagate dependencies across the 
whole sentence.
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                                  GRU 
 The GRUn unit has a new variable called c, 

which is a ”memory cell” that provides a bit 
of memory to remember words even further 
along the sentence.

At every step, this memory cell c is overwritten 
by č, computed using the activation function 
tanh of Wc.

The purpose of č is to replace c through the use of 
a gate Γu, which takes a value between 0 and u, which takes a value between 0 and 
1, and it basically decides whether or not we 
update c with č.

When Γu, which takes a value between 0 and u = 0 then c<t> = c<t-1> . Therefore the 
value of c<t> is maintained across many time 
steps. This allows overcoming the problem of 
vanishing gradients.

On the other hand, when Γu, which takes a value between 0 and u = 1 then č <t> = 
c<t>.
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Gated Recurrent Unit (GRU)  

When Γu, which takes a value between 0 and u = 0 then c<t> = c<t-1> . Therefore the 
value of c<t> is maintained across many time 
steps. This allows overcoming the problem of 
vanishing gradients.

On the other hand, when Γu, which takes a value between 0 and u = 1 then č <t> = 
c<t>.

The equations that govern this unit are:
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Long Short Term Memory (LSTM)
 LSTM is another, even more powerful, unit to learn very long-range 

connections in a sequence. The unit consists of three gates: the 
“forget”, “update” and “output” gate.

The forget gate plays the role of (1- Γu, which takes a value between 0 and u) that we saw in the GRU unit.

Additionally, this time, c<t> is different than a<t>.
These are the equations that govern the unit, followed by the visual 

architecture:
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LSTM
 

An LSTM unit is more powerful and flexible than a GRU unit, and it’s 
the more proven choice. GRU units, instead, are more recent and 
more straightforward, so it’s easier to build bigger models with 
them.
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Bidirectional LSTM (BLSTM)

 These networks take not only information from earlier in the sequence, 
but also from later on. They are basically like a patient listener. 
They “listen” to the whole sentence before making a prediction, 
which is nice, generally speaking. Not a lot of humans can do that!



Case Study 2 – CNN for Classification 
of Malware Disassembly Files 

– David Gibert
The extracted features from the disassembled files are usually n-grams.

An n-gram is a contiguous sequence of n items from a sentence. 

In this case, those items are opcodes extracted from the disassembled files.

Instead, represent opcodes as word embeddings that captures the 
relationship among the words (here, opcodes).

Language models here learn vector representation of words, with the 
hypothesis that words that occur in the same contexts tend to share semantic 
meaning.

Skip-Gram model tries to predict each context word from its target word.

 



Case Study 2 – CNN for Classification 
of Malware Disassembly Files 

– David Gibert
● First, build a vocabulary of words from the malware training samples (665 

opcodes)
● Represent each word (opcode like push) as a one-hot vector.
● The output layer depends on the window size, w (neighbourhood size)
● If w=1 (one word each on left & right of target word), then network 

output is a 2D vector – probs. Of words on the left and probs of words 
on the right

● Hidden layer dimension = VxE (vocabulary size x embeding size)
● Opcodes whose vector representations are most similar
● to the opcode "push" are:

1. pop
2. insertps
3. fucomp
which makes sense because tons of push instructions in malware files are
followed by the pop instruction or viceversa and are the two opcodes 

most
used. 

● Use CNN on the word embeddings to classify the malware

 



Case 3 - IoT Malware Hunting 
Using RNN – HamidHaddad et al

Internet of Things (IoT) devices are increasingly deployed in different industries and 
for different purposes (e.g. sensing/collecting of environmental data in both 
civilian and military settings).

 They are a valuable attack target, such as malware designed to compromise 
specific IoT devices.

In this work Recurrent Neural Network (RNN) was used in detecting IoT malware. 
Specifically, theirvapproach uses RNN to analyze ARM-based IoT applications’ 
execution operation

codes (OpCodes).

IoT application dataset comprising 281 malware and 270 benign ware, evaluated 
on 100 new IoT malware samples (i.e. not previously exposed to the model) with 
three different Long Short Term Memory (LSTM) configurations. 

Obtained an accuracy of 98.18%
 



Thank youThank you



Geometric Interpretation of 
Perceptron Learning



Training

• Generalization: network’s performance 
on a set of test patterns it has never 
seen before (lower than on training set)

• Training set used to let ANN capture 
features in data or mapping

• Initial large drop in error is due to 
learning, but subsequent slow reduction 
is due to:

1. Network memorization (too 
many training cycles used)

2. Overfitting (too many hidden 
nodes)

(network learns individual training 
examples and loses 
generalization ability)

Error (eg SSE)

No. of iterations

Optimum 
network

Testing

Training
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